Your browser doesn't support javascript.
loading
Layered Hydride LiH4 with a Pressure-Insensitive Superconductivity.
Li, Xing; Guo, Zixuan; Zhang, Xiaohua; Yang, Guochun.
Affiliation
  • Li X; State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
  • Guo Z; State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
  • Zhang X; State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
  • Yang G; State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
Inorg Chem ; 63(18): 8257-8263, 2024 May 06.
Article in En | MEDLINE | ID: mdl-38662198
ABSTRACT
For hydride superconductors, each significant advance is built upon the discovery of novel H-based structural units, which in turn push the understanding of the superconducting mechanism to new heights. Based on first-principles calculations, we propose a metastable LiH4 with a wavy H layer composed of the edge-sharing pea-like H18 rings at high pressures. Unexpectedly, it exhibits pressure-insensitive superconductivity manifested by an extremely small pressure coefficient (dTc/dP) of 0.04 K/GPa. This feature is attributed to the slightly weakened electron-phonon coupling with pressure, caused by the reduced charge transfer from Li atoms to wavy H layers, significantly suppressing the substantial increase in the contribution of phonons to Tc. Its superconductivity originates from the strong coupling between the H 1s electrons and the high-frequency phonons associated with the H layer. Our study extends the list of H-based structural units and enhances the in-depth understanding of pressure-related superconductivity.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Inorg Chem Year: 2024 Document type: Article Affiliation country: China Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Inorg Chem Year: 2024 Document type: Article Affiliation country: China Country of publication: United States