Your browser doesn't support javascript.
loading
Abatacept Pharmacokinetics and Exposure Response in Patients Hospitalized With COVID-19: A Secondary Analysis of the ACTIV-1 IM Randomized Clinical Trial.
Balevic, Stephen J; Benjamin, Daniel K; Powderly, William G; Smith, P Brian; Gonzalez, Daniel; McCarthy, Matthew W; Shaw, Linda K; Lindsell, Christopher J; Bozzette, Sam; Williams, Daphne; Linas, Benjamin P; Blamoun, John; Javeri, Heta; Hornik, Christoph P.
Affiliation
  • Balevic SJ; Duke Clinical Research Institute, Durham, North Carolina.
  • Benjamin DK; Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina.
  • Powderly WG; Duke Clinical Research Institute, Durham, North Carolina.
  • Smith PB; Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina.
  • Gonzalez D; Division of Infectious Diseases, Department of Medicine, Washington University in St Louis, St Louis, Missouri.
  • McCarthy MW; Duke Clinical Research Institute, Durham, North Carolina.
  • Shaw LK; Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina.
  • Lindsell CJ; Duke Clinical Research Institute, Durham, North Carolina.
  • Bozzette S; Department of Medicine, Weill Cornell Medicine, New York, New York.
  • Williams D; Duke Clinical Research Institute, Durham, North Carolina.
  • Linas BP; Duke Clinical Research Institute, Durham, North Carolina.
  • Blamoun J; National Center for Advancing Translational Sciences, Bethesda, Maryland.
  • Javeri H; Bristol Myers Squibb, Philadelphia, Pennsylvania.
  • Hornik CP; Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts.
JAMA Netw Open ; 7(4): e247615, 2024 Apr 01.
Article in En | MEDLINE | ID: mdl-38662372
ABSTRACT
Importance The pharmacokinetics of abatacept and the association between abatacept exposure and outcomes in patients with severe COVID-19 are unknown.

Objective:

To characterize abatacept pharmacokinetics, relate drug exposure with clinical outcomes, and evaluate the need for dosage adjustments. Design, Setting, and

Participants:

This study is a secondary analysis of data from the ACTIV-1 (Accelerating COVID-19 Therapeutic Interventions and Vaccines) Immune Modulator (IM) randomized clinical trial conducted between October 16, 2020, and December 31, 2021. The trial included hospitalized adults who received abatacept in addition to standard of care for treatment of COVID-19 pneumonia. Data analysis was performed between September 2022 and February 2024. Exposure Single intravenous infusion of abatacept (10 mg/kg with a maximum dose of 1000 mg). Main Outcomes and

Measures:

Mortality at day 28 was the primary outcome of interest, and time to recovery at day 28 was the secondary outcome. Drug exposure was assessed using the projected area under the serum concentration time curve over 28 days (AUC0-28). Logistic regression modeling was used to analyze the association between drug exposure and 28-day mortality, adjusted for age, sex, and disease severity. The association between time to recovery and abatacept exposure was examined using Fine-Gray modeling with death as a competing risk, and was adjusted for age, sex, and disease severity.

Results:

Of the 509 patients who received abatacept, 395 patients with 848 serum samples were included in the population pharmacokinetic analysis. Their median age was 55 (range, 19-89) years and most (250 [63.3%]) were men. Abatacept clearance increased with body weight and more severe disease activity at baseline. Drug exposure was higher in patients who survived vs those who died, with a median AUC0-28 of 21 428 (range, 8462-43 378) mg × h/L vs 18 262 (range, 9628-27 507) mg × h/L (P < .001). Controlling for age, sex, and disease severity, an increase of 5000 units in AUC0-28 was associated with lower odds of mortality at day 28 (OR, 0.52 [95% CI, 0.35-0.79]; P = .002). For an AUC0-28 of 19 400 mg × h/L or less, there was a higher probability of recovery at day 28 (hazard ratio, 2.63 [95% CI, 1.70-4.08] for every 5000-unit increase; P < .001). Controlling for age, sex, and disease severity, every 5000-unit increase in AUC0-28 was also associated with lower odds of a composite safety event at 28 days (OR, 0.46 [95% CI, 0.33-0.63]; P < .001). Using the dosing regimen studied in the ACTIV-1 IM trial, 121 of the 395 patients (30.6%) would not achieve an abatacept exposure of at least 19 400 mg × h/L, particularly at the extremes of body weight. Using a modified, higher-dose regimen, only 12 patients (3.0%) would not achieve the hypothesized target abatacept exposure. Conclusions and Relevance In this study, patients who were hospitalized with severe COVID-19 and achieved higher projected abatacept exposure had reduced mortality and a higher probability of recovery with fewer safety events. However, abatacept clearance was high in this population, and the current abatacept dosing (10 mg/kg intravenously with a maximum of 1000 mg) may not achieve optimal exposure in all patients. Trial Registration ClinicalTrials.gov Identifier NCT04593940.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Abatacept / SARS-CoV-2 / COVID-19 / COVID-19 Drug Treatment Limits: Adult / Aged / Aged80 / Female / Humans / Male / Middle aged Language: En Journal: JAMA Netw Open Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Abatacept / SARS-CoV-2 / COVID-19 / COVID-19 Drug Treatment Limits: Adult / Aged / Aged80 / Female / Humans / Male / Middle aged Language: En Journal: JAMA Netw Open Year: 2024 Document type: Article