Your browser doesn't support javascript.
loading
Protein complexes from edible mushrooms as a sustainable potato protection against coleopteran pests.
Pogacar, Karmen; Grundner, Maja; Zigon, Primoz; Coll, Anna; Panevska, Anastasija; Lukan, Tjasa; Petek, Marko; Razinger, Jaka; Gruden, Kristina; Sepcic, Kristina.
Affiliation
  • Pogacar K; Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.
  • Grundner M; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia.
  • Zigon P; Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
  • Coll A; Plant Protection Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia.
  • Panevska A; Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.
  • Lukan T; Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
  • Petek M; Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.
  • Razinger J; Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.
  • Gruden K; Plant Protection Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia.
  • Sepcic K; Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.
Plant Biotechnol J ; 2024 May 10.
Article in En | MEDLINE | ID: mdl-38733093
ABSTRACT
Protein complexes from edible oyster mushrooms (Pleurotus sp.) composed of pleurotolysin A2 (PlyA2) and pleurotolysin B (PlyB) exert toxicity in feeding tests against Colorado potato beetle (CPB) larvae, acting through the interaction with insect-specific membrane sphingolipid. Here we present a new strategy for crop protection, based on in planta production of PlyA2/PlyB protein complexes, and we exemplify this strategy in construction of transgenic potato plants of cv Désirée. The transgenics in which PlyA2 was directed to the vacuole and PlyB to the endoplasmic reticulum are effectively protected from infestation by CPB larvae without impacting plant performance. These transgenic plants showed a pronounced effect on larval feeding rate, the larvae feeding on transgenic plants being on average five to six folds lighter than larvae feeding on controls. Further, only a fraction (11%-37%) of the larvae that fed on transgenic potato plants completed their life cycle and developed into adult beetles. Moreover, gene expression analysis of CPB larvae exposed to PlyA2/PlyB complexes revealed the response indicative of a general stress status of larvae and no evidence of possibility of developing resistance due to the functional inactivation of PlyA2/PlyB sphingolipid receptors.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Plant Biotechnol J Journal subject: BIOTECNOLOGIA / BOTANICA Year: 2024 Document type: Article Affiliation country: Slovenia

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Plant Biotechnol J Journal subject: BIOTECNOLOGIA / BOTANICA Year: 2024 Document type: Article Affiliation country: Slovenia
...