Your browser doesn't support javascript.
loading
Efficient removal of oxytetracycline antibiotic from aqueous media using UV/g-C3N4/Fe3O4 photocatalytic process.
Mahmoudi, Kourosh; Farzadkia, Mahdi; Rezaei Kalantary, Roshanak; Sobhi, Hamid Reza; Yeganeh, Mojtaba; Esrafili, Ali.
Affiliation
  • Mahmoudi K; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
  • Farzadkia M; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
  • Rezaei Kalantary R; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
  • Sobhi HR; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
  • Yeganeh M; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
  • Esrafili A; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
Heliyon ; 10(9): e30604, 2024 May 15.
Article in En | MEDLINE | ID: mdl-38765134
ABSTRACT
Residual pharmaceuticals in the environment are a class of emerging pollutants that endanger human health. Tetracycline's family, including oxytetracycline (OTC), are known as one of the most produced and consumed antibiotics worldwide. The g-C3N4/Fe3O4 nanocomposite with high level of catalytic efficiency features suitable performance in water/wastewater treatment. Therefore, in the present study, this nanocomposite was applied to remove the oxytetracycline from the aqueous environment. In this research study, g-C3N4/Fe3O4 nanocomposite (serving as catalyst) was initially synthesized by a simple hydrothermal method. The effect of key operating parameters such as initial solution pH, dose of catalyst, contact time and initial concentration of OTC in aqueous solutions was investigated under UV irradiation. In addition, COD and TOC tests, the kinetics and the effect of radical scavengers on the applied photocatalytic process were all evaluated. The maximum removal efficiency of OTC (99.8 %) was achieved under the following conditions neutral solution pH 7; catalyst dose, 0.7 g/L; and an initial OTC concentration of 5 mg/L. The data showed that the kinetics of the reaction followed the first-order model with R2 of 0.9755. The respective COD and TOC efficiency values for the applied photocatalytic process were determined to be 87 and 59 %, respectively. In addition, the lowest removal efficiency of OTC was observed in the presence of tert-butanol radical scavengers, and OH radicals played a main role. The UV/g-C3N4/Fe3O4 photocatalytic process proved to be highly efficient for the removal of OTC antibiotic and could be potentially applied for the removal of other pollutants from aqueous solutions.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Heliyon Year: 2024 Document type: Article Affiliation country: Iran Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Heliyon Year: 2024 Document type: Article Affiliation country: Iran Country of publication: United kingdom