Your browser doesn't support javascript.
loading
Examining the potential impacts of a coastal renourishment project on the presence and abundance of Escherichia coli.
Lewis, Jordan A; Frost, Victoria J; Heard, Matthew J.
Affiliation
  • Lewis JA; Department of Biology, Winthrop University, Rock Hill, South Carolina, United States of America.
  • Frost VJ; Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America.
  • Heard MJ; Department of Biology, Winthrop University, Rock Hill, South Carolina, United States of America.
PLoS One ; 19(5): e0304061, 2024.
Article in En | MEDLINE | ID: mdl-38787843
ABSTRACT
Erosion poses a significant threat to oceanic beaches worldwide. To combat this threat, management agencies often utilize renourishment, which supplements eroded beaches with offsite sand. This process can alter the physical characteristics of the beach and can influence the presence and abundance of microbial communities. In this study, we examined how an oceanic beach renourishment project may have impacted the presence and abundance of Escherichia coli (E. coli), a common bacteria species, and sand grain size, a sediment characteristic that can influence bacterial persistence. Using an observational field approach, we quantified the presence and abundance of E. coli in sand (from sub-tidal, intertidal, and dune zones on the beach) and water samples at study sites in both renourished and non-renourished sections of Folly Beach, South Carolina, USA in 2014 and 2015. In addition, we also measured how renourishment may have impacted sand grain size by quantifying the relative frequency of grain sizes (from sub-tidal, intertidal, and dune zones on the beach) at both renourished and non-renourished sites. Using this approach, we found that E. coli was present in sand samples in all zones of the beach and at each of our study sites in both years of sampling but never in water samples. Additionally, we found that in comparison to non-renourished sections, renourished sites had significantly higher abundances of E. coli and coarser sand grains in the intertidal zone, which is where renourished sand is typically placed. However, these differences were only present in 2014 and were not detected when we resampled the study sites in 2015. Collectively, our findings show that E. coli can be commonly found in this sandy beach microbial community. In addition, our results suggest that renourishment has the potential to alter both the physical structure of the beach and the microbial community but that these impacts may be short-lived.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bathing Beaches / Escherichia coli Country/Region as subject: America do norte Language: En Journal: PLoS One Journal subject: CIENCIA / MEDICINA Year: 2024 Document type: Article Affiliation country: United States Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bathing Beaches / Escherichia coli Country/Region as subject: America do norte Language: En Journal: PLoS One Journal subject: CIENCIA / MEDICINA Year: 2024 Document type: Article Affiliation country: United States Country of publication: United States