N-alkane shape distinctive microbial patterns in Kuroshio Extension.
Environ Int
; 188: 108757, 2024 Jun.
Article
in En
| MEDLINE
| ID: mdl-38795659
ABSTRACT
Marine microorganisms are primary drivers of the elemental cycling. The interaction between heterotrophic prokaryotes and biomarker (n-alkane) in Kuroshio Extension (KE) remains unclear. Here, we categorize KE into three characteristic areas based on ocean temperatures and nutrient conditions Cold Water Area (CWA), Mixed Area (MA), and Warm Water Area (WWA). A total of 49 samples were collected during two-year voyage to identify the source of n-alkane and associated degrading microorganisms. Total n-alkane concentrations (Σn-Alk) in surface water (SW) spanned from 1,308 ng L-1 to 1,890 ng L-1, it was significantly higher (Tukey-Kramer test, p < 0.05) in MA than CWA and WWA. The Σn-Alk in surface sediments (SS) gradually increased from north to south, ranging from 5,982 ng g-1 to 37,857 ng g-1. Bacteria and algae were the primary sources of n-alkane in both SW and SS. Proteobacteria was the most widely distributed among three areas. The presence of Rhodobacteraceae with alkB was the primary reason affecting n-alkane concentrations in SW. The Gammaproteobacteria with alkB and alkR chiefly affected n-alkane concentrations in SS. In summary, n-alkane s serve as an energy source for particular microorganisms, shaping the unique oceanographic patterns.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Seawater
/
Alkanes
Country/Region as subject:
Asia
Language:
En
Journal:
Environ Int
Year:
2024
Document type:
Article
Country of publication:
Netherlands