Your browser doesn't support javascript.
loading
Constructing an Interlaced Catalytic Surface via Fluorine-Doped Bimetallic Oxides for Oxygen Electrode Processes in Li-O2 Batteries.
Sun, Zongqiang; Lin, Xiaodong; Wang, Chutao; Tan, Yanyan; Dou, Wenjie; Hu, Ajuan; Cui, Jiaqing; Fan, Jingmin; Yuan, Ruming; Zheng, Mingsen; Dong, Quanfeng.
Affiliation
  • Sun Z; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiam
  • Lin X; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiam
  • Wang C; Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, B-1348, Belgium.
  • Tan Y; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiam
  • Dou W; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiam
  • Hu A; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiam
  • Cui J; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiam
  • Fan J; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiam
  • Yuan R; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiam
  • Zheng M; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiam
  • Dong Q; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiam
Adv Mater ; : e2404319, 2024 May 28.
Article in En | MEDLINE | ID: mdl-38806164
ABSTRACT
Lithium-oxygen (Li-O2) batteries, renowned for their high theoretical energy density, have garnered significant interest as prime candidates for future electric device development. However, their actual capacity is often unsatisfactory due to the passivation of active sites by solid-phase discharge products. Optimizing the growth and storage of these products is a crucial step in advancing Li-O2 batteries. Here, a fluorine-doped bimetallic cobalt-nickel oxide (CoNiO2- xFx/CC) with an interlaced catalytic surface (ICS) and a corncob-like structure is proposed as an oxygen electrode. Unlike conventional oxide electrodes with a "single adsorption catalytic mechanism," the ICS of CoNiO2- xFx/CC offers a "competitive adsorption catalytic mechanism," where oxygen sites facilitate oxygen conversion while fluorine sites contribute to the growth of Li2O2. This results in a change in Li2O2 morphology from a surface film to toroidal particles, effectively preventing the burial of active sites. Additionally, the unique open architecture aids in the capture and release of oxygen and the formation of well-contacted Li2O2/electrode interfaces, which benefits the complete decomposition of Li2O2 products. Consequently, the Li-O2 battery with a CoNiO2- xFx/CC cathode demonstrates a high specific capacity of up to 30923 mAh g-1 and a lifespan exceeding 580 cycles, surpassing most reported metal oxide-based cathodes.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article
...