Your browser doesn't support javascript.
loading
Multiple photofluorochromic luminogens via catalyst-free alkene oxidative cleavage photoreaction for dynamic 4D codes encryption.
Lu, Lin; Wu, Bo; He, Xinyuan; Zhao, Fen; Feng, Xing; Wang, Dong; Qiu, Zijie; Han, Ting; Zhao, Zheng; Tang, Ben Zhong.
Affiliation
  • Lu L; Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
  • Wu B; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
  • He X; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
  • Zhao F; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
  • Feng X; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
  • Wang D; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
  • Qiu Z; School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, China.
  • Han T; Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
  • Zhao Z; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
  • Tang BZ; Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China. hanting@szu.edu.cn.
Nat Commun ; 15(1): 4647, 2024 May 31.
Article in En | MEDLINE | ID: mdl-38821919
ABSTRACT
Controllable photofluorochromic systems with high contrast and multicolor in both solutions and solid states are ideal candidates for the development of dynamic artificial intelligence. However, it is still challenging to realize multiple photochromism within one single molecule, not to mention good controllability. Herein, we report an aggregation-induced emission luminogen TPE-2MO2NT that undergoes oxidation cleavage upon light irradiation and is accompanied by tunable multicolor emission from orange to blue with time-dependence. The photocleavage mechanism revealed that the self-generation of reactive oxidants driving the catalyst-free oxidative cleavage process. A comprehensive analysis of TPE-2MO2NT and other comparative molecules demonstrates that the TPE-2MO2NT molecular scaffold can be easily modified and extended. Further, the multicolor microenvironmental controllability of TPE-2MO2NT photoreaction within polymer matrices enables the fabrication of dynamic fluorescence images and 4D information codes, providing strategies for advanced controllable information encryption.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2024 Document type: Article Affiliation country: China Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2024 Document type: Article Affiliation country: China Country of publication: United kingdom