Your browser doesn't support javascript.
loading
One-step of ionic liquid-assisted stabilization and dispersion: Exfoliated graphene and its applications in stimuli-responsive conductive hydrogels based on chitosan.
Zhang, Xikun; Zhang, He; Lv, Xue; Xie, Ting; Chen, Junzheng; Fang, Di; Yi, Shurui.
Affiliation
  • Zhang X; School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
  • Zhang H; School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
  • Lv X; School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China. Electronic address: lvxueccut@126.com.
  • Xie T; School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
  • Chen J; School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
  • Fang D; School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
  • Yi S; School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
Int J Biol Macromol ; 271(Pt 1): 132699, 2024 Jun.
Article in En | MEDLINE | ID: mdl-38824103
ABSTRACT
Conductive hydrogels, as novel flexible biosensors, have demonstrated significant potential in areas such as soft robotics, electronic devices, and wearable technology. Graphene is a promising conductive material, but its dispersibility in aqueous solutions exists difficulties. Here, we discover that untreated graphene, after exfoliation by different ionic liquids, can disperse well in aqueous solutions. We investigate the impact of four ionic liquids with varying alkyl chain lengths ([Bmim]Cl, [Omim]Cl, [Dmim]Cl, [Hmim]Cl) on the dispersibility of grapheme, and a dual physically cross-linked network hydrogel structure is designed using acrylamide (AM), acrylic acid (AA), methyl methacrylate octadecyl ester (SMA), ionic liquid@graphene (ILs@GN), and chitosan (CS). Notably, SMA, CS, AA and AM act as dynamic cross-linking points through hydrophobic interactions and hydrogen bonding, playing a crucial role in energy dissipation. The resulting hydrogel exhibits outstanding stretchability (2250 %), remarkable toughness (1.53 MJ/m3) in tensile deformation performance, high compressive strength (1.13 MPa), rapid electrical responsiveness (response time âˆ¼ 50 ms), high electrical conductivity (12.11 mS/cm), and excellent strain sensing capability (GF = 12.31, strain = 1000 %). These advantages make our composite hydrogel demonstrate high stability in extensive deformations, offering repeatability in pressure and strain and making it a promising candidate for multifunctional sensors and flexible electrodes.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Hydrogels / Chitosan / Electric Conductivity / Ionic Liquids / Graphite Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article Affiliation country: China Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Hydrogels / Chitosan / Electric Conductivity / Ionic Liquids / Graphite Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article Affiliation country: China Country of publication: Netherlands