Intracellular Retention of Estradiol is Augmented by GRAM Domain Containing Protein ASTER-B in Breast Cancer Cells.
bioRxiv
; 2024 May 20.
Article
in En
| MEDLINE
| ID: mdl-38826375
ABSTRACT
Estrogens are naturally occurring steroid hormones that also act as the primary mitogens for estrogen receptor-positive (ER+) breast cancers. While elevated blood levels of estrogens have been associated with poor prognosis, the relationship between circulating hormone levels in the blood are related to intracellular hormone concentrations. Here, we observed that MCF-7 cells acutely treated with 17ß-estradiol (E2) retain a substantial amount of the hormone even upon removal of the hormone from the culture medium. Moreover, global patterns of E2-dependent gene expression are sustained for hours after acute E2 treatment and hormone removal. While circulating E2 is sequestered by sex hormone binding globulin (SHBG), the mechanisms of intracellular E2 retention are poorly understood. We found that a mislocalized GRAM-domain containing protein ASTER-B in the nucleus, which is observed in a subset of patients, is associated with higher cellular E2 retention. Accumulation and retention of hormone are related to the steroidal properties of E2. Finally, we observed that nuclear ASTER-B-mediated E2 retention is required for sustained hormone-induced ERα chromatin occupancy at enhancers and gene expression, as well as subsequent cell growth responses. Our results add intracellular hormone retention as a mechanism controlling E2-dependent gene expression and downstream biological outcomes. S ignificance This study advances our understanding of how estradiol can be accumulated and retained intracellularly to drive a pro-proliferative gene expression program in ER+ breast cancer cells. Mechanistically, intracellular E2 retention is mediated in part by mislocalized, nuclear ASTER-B, which is aberrantly localized to the nuclei of cancer cells in some breast cancer patients.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
BioRxiv
Year:
2024
Document type:
Article
Country of publication:
United States