ß-catenin mRNA encapsulated in SM-102 lipid nanoparticles enhances bone formation in a murine tibia fracture repair model.
Bioact Mater
; 39: 273-286, 2024 Sep.
Article
in En
| MEDLINE
| ID: mdl-38832305
ABSTRACT
Fractures continue to be a global economic burden as there are currently no osteoanabolic drugs approved to accelerate fracture healing. In this study, we aimed to develop an osteoanabolic therapy which activates the Wnt/ß-catenin pathway, a molecular driver of endochondral ossification. We hypothesize that using an mRNA-based therapeutic encoding ß-catenin could promote cartilage to bone transformation formation by activating the canonical Wnt signaling pathway in chondrocytes. To optimize a delivery platform built on recent advancements in liposomal technologies, two FDA-approved ionizable phospholipids, DLin-MC3-DMA (MC3) and SM-102, were used to fabricate unique ionizable lipid nanoparticle (LNP) formulations and then tested for transfection efficacy both in vitro and in a murine tibia fracture model. Using firefly luciferase mRNA as a reporter gene to track and quantify transfection, SM-102 LNPs showed enhanced transfection efficacy in vitro and prolonged transfection, minimal fracture interference and no localized inflammatory response in vivo over MC3 LNPs. The generated ß-cateninGOF mRNA encapsulated in SM-102 LNPs (SM-102-ß-cateninGOF mRNA) showed bioactivity in vitro through upregulation of downstream canonical Wnt genes, axin2 and runx2. When testing SM-102-ß-cateninGOF mRNA therapeutic in a murine tibia fracture model, histomorphometric analysis showed increased bone and decreased cartilage composition with the 45 µg concentration at 2 weeks post-fracture. µCT testing confirmed that SM-102-ß-cateninGOF mRNA promoted bone formation in vivo, revealing significantly more bone volume over total volume in the 45 µg group. Thus, we generated a novel mRNA-based therapeutic encoding a ß-catenin mRNA and optimized an SM-102-based LNP to maximize transfection efficacy with a localized delivery.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Bioact Mater
Year:
2024
Document type:
Article
Affiliation country:
United States
Country of publication:
China