Your browser doesn't support javascript.
loading
Mitochondrial endogenous substance transport-inspired nanomaterials for mitochondria-targeted gene delivery.
Wang, Yi; Yang, Jing-Song; Zhao, Min; Chen, Jia-Qi; Xie, Hai-Xin; Yu, Hao-Yuan; Liu, Na-Hui; Yi, Zi-Juan; Liang, Hui-Lin; Xing, Lei; Jiang, Hu-Lin.
Affiliation
  • Wang Y; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
  • Yang JS; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
  • Zhao M; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
  • Chen JQ; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
  • Xie HX; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
  • Yu HY; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
  • Liu NH; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
  • Yi ZJ; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
  • Liang HL; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
  • Xing L; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
  • Jiang HL; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; College of Pharmacy, Yanbian University, Yanji 133002, China. Electronic address: jianghulin3@cpu.edu.cn.
Adv Drug Deliv Rev ; 211: 115355, 2024 Aug.
Article in En | MEDLINE | ID: mdl-38849004
ABSTRACT
Mitochondrial genome (mtDNA) independent of nuclear gene is a set of double-stranded circular DNA that encodes 13 proteins, 2 ribosomal RNAs and 22 mitochondrial transfer RNAs, all of which play vital roles in functions as well as behaviors of mitochondria. Mutations in mtDNA result in various mitochondrial disorders without available cures. However, the manipulation of mtDNA via the mitochondria-targeted gene delivery faces formidable barriers, particularly owing to the mitochondrial double membrane. Given the fact that there are various transport channels on the mitochondrial membrane used to transfer a variety of endogenous substances to maintain the normal functions of mitochondria, mitochondrial endogenous substance transport-inspired nanomaterials have been proposed for mitochondria-targeted gene delivery. In this review, we summarize mitochondria-targeted gene delivery systems based on different mitochondrial endogenous substance transport pathways. These are categorized into mitochondrial steroid hormones import pathways-inspired nanomaterials, protein import pathways-inspired nanomaterials and other mitochondria-targeted gene delivery nanomaterials. We also review the applications and challenges involved in current mitochondrial gene editing systems. This review delves into the approaches of mitochondria-targeted gene delivery, providing details on the design of mitochondria-targeted delivery systems and the limitations regarding the various technologies. Despite the progress in this field is currently slow, the ongoing exploration of mitochondrial endogenous substance transport and mitochondrial biological phenomena may act as a crucial breakthrough in the targeted delivery of gene into mitochondria and even the manipulation of mtDNA.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Gene Transfer Techniques / Nanostructures / Mitochondria Limits: Animals / Humans Language: En Journal: Adv Drug Deliv Rev Journal subject: FARMACOLOGIA / TERAPIA POR MEDICAMENTOS Year: 2024 Document type: Article Affiliation country: China Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Gene Transfer Techniques / Nanostructures / Mitochondria Limits: Animals / Humans Language: En Journal: Adv Drug Deliv Rev Journal subject: FARMACOLOGIA / TERAPIA POR MEDICAMENTOS Year: 2024 Document type: Article Affiliation country: China Country of publication: Netherlands