Your browser doesn't support javascript.
loading
Minimizing Contact Resistance and Flicker Noise in Micro Graphene Hall Sensors Using Persistent Carbene Modified Gold Electrodes.
Sun, Honglin; Huang, Ting; Alam, Md Masruck; Li, Jingwei; Jang, Dong Wook; Wang, Tianle; Chen, Haohan; Ho, Yi-Ping; Gao, Zhaoli.
Affiliation
  • Sun H; Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong SAR, China.
  • Huang T; Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong SAR, China.
  • Alam MM; Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong SAR, China.
  • Li J; Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong SAR, China.
  • Jang DW; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China.
  • Wang T; Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong SAR, China.
  • Chen H; Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong SAR, China.
  • Ho YP; Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong SAR, China.
  • Gao Z; School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
ACS Appl Mater Interfaces ; 16(24): 31473-31479, 2024 Jun 19.
Article in En | MEDLINE | ID: mdl-38850243
ABSTRACT
Scalable micro graphene Hall sensors (µGHSs) hold tremendous potential for highly sensitive and label-free biomagnetic sensing in physiological solutions. To enhance the performance of these devices, it is crucial to optimize frequency-dependent flicker noise to reduce the limit of detection (LOD), but it remains a great challenge due to the large contact resistance at the graphene-metal contact. Here we present a surface modification strategy employing persistent carbene on gold electrodes to reduce the contact resistivity by a factor of 25, greatly diminishing µGHS flicker noise by a factor of 1000 to 3.13 × 10-14 V2/Hz while simultaneously lowering the magnetic LOD SB1/2 to 1440 nT/Hz1/2 at 1 kHz under a 100 µA bias current. To the best of our knowledge, this represents the lowest SB1/2 reported for scalable µGHSs fabricated through wafer-scale photolithography. The reduction in contact noise is attributed to the π-π stacking interaction between the graphene and the benzene rings of persistent carbene, as well as the decrease in the work function of gold as confirmed by Kelvin Probe Force Microscopy. By incorporating a microcoil into the µGHS, we have demonstrated the real-time detection of superparamagnetic nanoparticles (SNPs), achieving a remarkable LOD of ∼528 µg/L. This advancement holds great potential for the label-free detection of magnetic biomarkers, e.g., ferritin, for the early diagnosis of diseases associated with iron overload, such as hereditary hemochromatosis (HHC).
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: China Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: China Country of publication: United States