Your browser doesn't support javascript.
loading
Clonal integration benefits Calystegia soldanella in heterogeneous habitats.
Li, Mingyan; Jiang, Siyu; Wang, Tong; Wang, Hui; Xing, Lijun; Li, Haimei; Sun, Yingkun; Guo, Xiao.
Affiliation
  • Li M; College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P.R. China.
  • Jiang S; College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P.R. China.
  • Wang T; College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P.R. China.
  • Wang H; College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P.R. China.
  • Xing L; College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P.R. China.
  • Li H; College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P.R. China.
  • Sun Y; College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P.R. China.
  • Guo X; College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P.R. China.
AoB Plants ; 16(3): plae028, 2024 Jun.
Article in En | MEDLINE | ID: mdl-38854500
ABSTRACT
Land-use change and tourism development have seriously threatened the ecosystems of coastal protection forests and beaches. Light and nutrients are spatially heterogeneously distributed between the two ecosystems. Clonal plants, such as Calystegia soldanella, which play a crucial role in maintaining the ecological stability of coastal habitats, are likely to encounter diverse environments. In this study, we investigated clonal integration and the division of labour in C. soldanella under heterogeneous (high nutrient and low light [HNLL]; low nutrient and high light [LNHL]) and homogeneous habitats. We cultivated pairs of connected and severed ramets of C. soldanella in these environments. Our results showed the total biomass (TB) of connected ramets was higher than that of severed ramets in heterogeneous environments, suggesting clonal integration enhances growth in heterogeneous habitats. The root shoot ratio was significantly lower in HNLL than in LNHL conditions for connected ramets, demonstrating a division of labour in growth under heterogeneous conditions. However, parameters of clonal propagation of C. soldanella did not significantly differ between connected and severed ramets in heterogeneous environments, indicating no division of labour in clonal propagation. In homogeneous environments, the growth of C. soldanella did not benefit from clonal integration. Connected ramets in heterogeneous habitats exhibited higher TB than in homogeneous habitats. The TB of one ramet in HNLL was consistently higher than that in LNHL, irrespective of ramet's states, which suggests that high soil nutrients may enhance the growth. We conclude that C. soldanella has the capability of clonal integration to achieve high biomass in heterogeneous but not in homogeneous conditions, and the establishment of coastal protection forests (high nutrient and low light) may foster the growth of C. soldanella.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: AoB Plants Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: AoB Plants Year: 2024 Document type: Article