Your browser doesn't support javascript.
loading
Genetically programmable cell membrane-camouflaged nanoparticles for targeted combination therapy of colorectal cancer.
Yang, Yun; Liu, Qingya; Wang, Meng; Li, Lang; Yu, Yan; Pan, Meng; Hu, Danrong; Chu, Bingyang; Qu, Ying; Qian, Zhiyong.
Affiliation
  • Yang Y; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
  • Liu Q; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
  • Wang M; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
  • Li L; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
  • Yu Y; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
  • Pan M; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
  • Hu D; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
  • Chu B; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
  • Qu Y; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
  • Qian Z; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. zhiyongqian@scu.edu.cn.
Signal Transduct Target Ther ; 9(1): 158, 2024 Jun 12.
Article in En | MEDLINE | ID: mdl-38862461
ABSTRACT
Cell membrane-camouflaged nanoparticles possess inherent advantages derived from their membrane structure and surface antigens, including prolonged circulation in the bloodstream, specific cell recognition and targeting capabilities, and potential for immunotherapy. Herein, we introduce a cell membrane biomimetic nanodrug platform termed MPB-3BP@CM NPs. Comprising microporous Prussian blue nanoparticles (MPB NPs) serving as both a photothermal sensitizer and carrier for 3-bromopyruvate (3BP), these nanoparticles are cloaked in a genetically programmable cell membrane displaying variants of signal regulatory protein α (SIRPα) with enhanced affinity to CD47. As a result, MPB-3BP@CM NPs inherit the characteristics of the original cell membrane, exhibiting an extended circulation time in the bloodstream and effectively targeting CD47 on the cytomembrane of colorectal cancer (CRC) cells. Notably, blocking CD47 with MPB-3BP@CM NPs enhances the phagocytosis of CRC cells by macrophages. Additionally, 3BP, an inhibitor of hexokinase II (HK2), suppresses glycolysis, leading to a reduction in adenosine triphosphate (ATP) levels and lactate production. Besides, it promotes the polarization of tumor-associated macrophages (TAMs) towards an anti-tumor M1 phenotype. Furthermore, integration with MPB NPs-mediated photothermal therapy (PTT) enhances the therapeutic efficacy against tumors. These advantages make MPB-3BP@CM NPs an attractive platform for the future development of innovative therapeutic approaches for CRC. Concurrently, it introduces a universal approach for engineering disease-tailored cell membranes for tumor therapy.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Colorectal Neoplasms / Cell Membrane / CD47 Antigen / Nanoparticles Limits: Animals / Humans Language: En Journal: Signal Transduct Target Ther Year: 2024 Document type: Article Affiliation country: China Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Colorectal Neoplasms / Cell Membrane / CD47 Antigen / Nanoparticles Limits: Animals / Humans Language: En Journal: Signal Transduct Target Ther Year: 2024 Document type: Article Affiliation country: China Country of publication: United kingdom