Your browser doesn't support javascript.
loading
Structure and function of FAP47 in the central pair apparatus of Chlamydomonas flagella.
Tani, Yuma; Yanagisawa, Haruaki; Yagi, Toshiki; Kikkawa, Masahide.
Affiliation
  • Tani Y; Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Yanagisawa H; Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Yagi T; Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Kikkawa M; Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan.
Article in En | MEDLINE | ID: mdl-38899546
ABSTRACT
Motile cilia have a so-called "9 + 2" structure, which consists of nine doublet microtubules and a central pair apparatus. The central pair apparatus (CA) is thought to interact mechanically with radial spokes and to control the flagellar beating. Recently, the components of the CA have been identified by proteomic and genomic analyses. Still, the mechanism of how the CA contributes to ciliary motility has much to be revealed. Here, we focused on one CA component with a large molecular weight FAP47, and its relationship with two other CA components with large molecular weight HYDIN, and CPC1. The analyses of motility of the Chlamydomonas mutants revealed that in contrast to cpc1 or hydin, which swam more slowly than the wild type, fap47 cells displayed wild-type swimming velocity and flagellar beat frequency, yet interestingly, fap47 cells have phototaxis defects and swim straighter than the wild-type cells. Furthermore, the double mutant fap47cpc1 and fap47hydin showed significantly slower swimming than cpc1 and hydin cells, and the motility defect of fap47cpc1 was rescued to the cpc1 level with GFP-tagged FAP47, indicating that the lack of FAP47 makes the motility defect of cpc1 worse. Cryo-electron tomography demonstrated that the fap47 lacks a part of the C1-C2 bridge of CA. Taken together, these observations indicate that FAP47 maintains the structural stiffness of the CA, which is important for flagellar regulation.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Cytoskeleton (Hoboken) Year: 2024 Document type: Article Affiliation country: Japan Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Cytoskeleton (Hoboken) Year: 2024 Document type: Article Affiliation country: Japan Country of publication: United States