Your browser doesn't support javascript.
loading
A comparative evaluation of polymeric materials as tissue equivalent phantoms in diagnostic radiology.
Sirin, Erdi; Altinsoy, Nesrin.
Affiliation
  • Sirin E; Istanbul Technical University (ITU), Institute of Energy, Ayazaga Kampusu, 34469, Istanbul, Turkey.
  • Altinsoy N; Istanbul Technical University (ITU), Institute of Energy, Ayazaga Kampusu, 34469, Istanbul, Turkey.
Biomed Phys Eng Express ; 10(5)2024 Jul 02.
Article in En | MEDLINE | ID: mdl-38906123
ABSTRACT
In this study tissue equivalency of the polymeric materials was investigated by comparing with ICRP 110 Male Adult Computational Phantom tissues. For this purpose, radiological properties of polyamide (PA), high density polyethylene (HDPE), ultra-high molecular weight polyethylene (UHMWPE), polypropylene (PP), polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), polyoxymethylene (POM) and polyurethane foam (PU FOAM) were evaluated in the diagnostic energy range (15-150 keV). The radiological properties of the materials and ICRP 110 Male and Female Adult Computational Phantom tissues were calculated with Phy-X/PSD software. No major differences were seen except for sex-specific organs, and comparisons were made using an adult male phantom. To confirm the results experimentally, a chest phantom was designed with the polymeric materials. The phantom was scanned by Siemens SOMATOM Edge CT device with tube voltage of 120 kVp and Hounsfield Unit (HU) values were measured. In addition, HU values were calculated using theoretical relationships and significant agreement was obtained between measured and calculated HUs. It was determined that PA, PP, UHMWPE and HDPE were equivalent to muscle and adipose tissue, PVC and PTFE were equivalent to mineral bone, PET and POM were equivalent to spongiosa bone and PU FOAM was equivalent to lung tissue.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polymers / Phantoms, Imaging Limits: Adult / Female / Humans / Male Language: En Journal: Biomed Phys Eng Express Year: 2024 Document type: Article Affiliation country: Turkey

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polymers / Phantoms, Imaging Limits: Adult / Female / Humans / Male Language: En Journal: Biomed Phys Eng Express Year: 2024 Document type: Article Affiliation country: Turkey