Your browser doesn't support javascript.
loading
Silk fibroin catheter with stable bioinspired inner-surfaces for inhibition of bioadhesion.
Xie, Xusheng; Liu, Jian; Li, Gang; Zhang, Keying; Wang, Xiuli; Zheng, Zhaozhu; Wang, Xiaoqin; Kaplan, David L.
Affiliation
  • Xie X; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province 215123, PR China; Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, Suzhou University, Suzhou, Anhui Province 234000, PR China.
  • Liu J; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province 215123, PR China.
  • Li G; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province 215123, PR China.
  • Zhang K; Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues, Suzhou University, Suzhou, Anhui Province 234000, PR China.
  • Wang X; College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning Province 116044, PR China.
  • Zheng Z; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province 215123, PR China; Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, Jiangsu Province 210096, PR China. Electronic address: zzzheng@suda.e
  • Wang X; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province 215123, PR China. Electronic address: wangxiaoqin@suda.edu.cn.
  • Kaplan DL; Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
Int J Biol Macromol ; 274(Pt 1): 133271, 2024 Aug.
Article in En | MEDLINE | ID: mdl-38906349
ABSTRACT
Biofilm formation on indwelling medical devices such as catheters and ventilators due to the adhesion of bacteria poses significant challenges in healthcare. Surface modification with micro- and nano-structures offers a promising strategy to prevent bioadhesion and is safer than surface chemical modification approaches. Here, catheters were prepared using silk fibroin (SF) hydrogels and an infusion molding method, with the inner surface featuring a micropapillae structure inspired by lotus leaves (SF-CMP). After phenylethanol (PEA) fumigation treatment, the resulting catheters (SF-CMP PEA) displayed improved swelling resistance and mechanical properties compared to methanol-treated catheters (SF-CMP MeOH). PEA was more efficient than methanol in controlling the size, distribution, and content of silk crystalline ß-sheet blocks and thus the swelling and mechanical properties. Moreover, the micro-papillae structure on SF-CMP PEA remained stable over 35 days in solution, in contrast to SF-CMP MeOH, which lasted <7 days. SF-CMP PEA exhibited repellent effects against E. coli and S. aureusin vitro, and low cytotoxicity to the endothelial cells cultured on the unpatterned surface. Additionally, subcutaneous implantation studies showed reduced inflammation around the micropatterned samples compared to controls with a plain, unpatterned surface. The unique properties of SF-based materials, including tunable structures, biocompatibility, degradation, and drug-loading capability make them an attractive material for anti-bioadhesion in applications ranging from indwelling medical devices to tissue engineering scaffolds.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Escherichia coli / Catheters / Fibroins Limits: Animals / Humans Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Escherichia coli / Catheters / Fibroins Limits: Animals / Humans Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article