Your browser doesn't support javascript.
loading
Toward high-resolution modeling of small molecule-ion channel interactions.
Harris, Brandon J; Nguyen, Phuong T; Zhou, Guangfeng; Wulff, Heike; DiMaio, Frank; Yarov-Yarovoy, Vladimir.
Affiliation
  • Harris BJ; Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States.
  • Nguyen PT; Biophysics Graduate Group, University of California, Davis, Davis, CA, United States.
  • Zhou G; Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States.
  • Wulff H; Department of Biochemistry, University of Washington, Seattle, WA, United States.
  • DiMaio F; Institute for Protein Design, University of Washington, Seattle, WA, United States.
  • Yarov-Yarovoy V; Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States.
Front Pharmacol ; 15: 1411428, 2024.
Article in En | MEDLINE | ID: mdl-38919257
ABSTRACT
Ion channels are critical drug targets for a range of pathologies, such as epilepsy, pain, itch, autoimmunity, and cardiac arrhythmias. To develop effective and safe therapeutics, it is necessary to design small molecules with high potency and selectivity for specific ion channel subtypes. There has been increasing implementation of structure-guided drug design for the development of small molecules targeting ion channels. We evaluated the performance of two RosettaLigand docking methods, RosettaLigand and GALigandDock, on the structures of known ligand-cation channel complexes. Ligands were docked to voltage-gated sodium (NaV), voltage-gated calcium (CaV), and transient receptor potential vanilloid (TRPV) channel families. For each test case, RosettaLigand and GALigandDock methods frequently sampled a ligand-binding pose within a root mean square deviation (RMSD) of 1-2 Å relative to the experimental ligand coordinates. However, RosettaLigand and GALigandDock scoring functions cannot consistently identify experimental ligand coordinates as top-scoring models. Our study reveals that the proper scoring criteria for RosettaLigand and GALigandDock modeling of ligand-ion channel complexes should be assessed on a case-by-case basis using sufficient ligand and receptor interface sampling, knowledge about state-specific interactions of the ion channel, and inherent receptor site flexibility that could influence ligand binding.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Front Pharmacol Year: 2024 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Front Pharmacol Year: 2024 Document type: Article Affiliation country: United States