Your browser doesn't support javascript.
loading
Enhancing Cartilage Metabolism in Rats through a Novel Thermal Stimulation Technique with Photosensitizers.
Cha, Ryota; Nakagawa, Shuji; Arai, Yuji; Inoue, Atsuo; Okubo, Naoki; Fujii, Yuta; Kaihara, Kenta; Nakamura, Kei; Kishida, Tsunao; Mazda, Osam; Takahashi, Kenji.
Affiliation
  • Cha R; Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
  • Nakagawa S; Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
  • Arai Y; Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
  • Inoue A; Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
  • Okubo N; Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
  • Fujii Y; Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
  • Kaihara K; Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
  • Nakamura K; Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
  • Kishida T; Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
  • Mazda O; Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
  • Takahashi K; Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in En | MEDLINE | ID: mdl-38928434
ABSTRACT
Although the moderate thermal stimulation of articular cartilage exerts chondroprotective effects, it is difficult to effectively heat deep articular cartilage with conventional methods. Photosensitizers increase the ambient temperature using near-infrared (NIR) radiation, which has high tissue permeability. We hypothesized that the intra-articular administration of photosensitizers and NIR irradiation would exert a greater heating effect on articular cartilage. We aimed to evaluate the heating effect of this method on cultured chondrocytes and rat knee cartilage. In vitro, we irradiated a photosensitizer-containing medium with NIR and measured changes in the medium temperature, cytotoxicity, and gene expression of heat shock protein (HSP) 70 and aggrecan (ACAN). In vivo, the knee joints of rats treated with photosensitizers were irradiated with NIR, and changes in intra-articular temperature and gene expression were measured, alongside histological analysis. The results showed that the medium and intra-articular temperature were raised to approximately 40 °C with no apparent disruption to articular cartilage or the immunohistochemically enhanced staining of HSP70 in chondrocytes. The gene expression of HSP70 and ACAN was increased in both cultured and articular cartilage. In summary, this method can safely heat joints and enhance cartilage metabolism by inducing HSP70 expression in articular cartilage. It presents a new hyperthermia therapy with effective cartilage protection.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cartilage, Articular / Photosensitizing Agents / HSP70 Heat-Shock Proteins / Chondrocytes Limits: Animals Language: En Journal: Int J Mol Sci Year: 2024 Document type: Article Affiliation country: Japan Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cartilage, Articular / Photosensitizing Agents / HSP70 Heat-Shock Proteins / Chondrocytes Limits: Animals Language: En Journal: Int J Mol Sci Year: 2024 Document type: Article Affiliation country: Japan Country of publication: Switzerland