Your browser doesn't support javascript.
loading
A novel "ON-OFF-ON" colorimetric and fluorescence dual-signal sensing APAP based on TSPP-Fe3.
Ma, Tianfeng; Jia, Yanyan; Shi, Lin; Xu, Xiaohua; Zheng, Kun; Fu, Zijia; Wang, Huan; Lu, Yongchang.
Affiliation
  • Ma T; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of pharmacy, Qinghai Minzu University, China.
  • Jia Y; QingHai Higher Vocational and Technical Institute, China.
  • Shi L; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of pharmacy, Qinghai Minzu University, China.
  • Xu X; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of pharmacy, Qinghai Minzu University, China.
  • Zheng K; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of pharmacy, Qinghai Minzu University, China.
  • Fu Z; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of pharmacy, Qinghai Minzu University, China.
  • Wang H; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of pharmacy, Qinghai Minzu University, China. Electronic address: qhmuwh1028@126.com.
  • Lu Y; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of pharmacy, Qinghai Minzu University, China. Electronic address: qhlych@126.com.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124759, 2024 Nov 15.
Article in En | MEDLINE | ID: mdl-38955068
ABSTRACT
Acetaminophen, also known as paracetamol (APAP), is a commonly used over-the-counter medication that is often used to treat headaches, toothaches, joint pain, muscle pain, and to lower body temperature. However, overdose can lead to liver damage, gastrointestinal distress, kidney damage, and cardiovascular disease. Therefore, it is very important to establish a method to quickly detect APAP. A novel "ON-OFF-ON" colorimetric and fluorescence dual-signal sensing system was constructed for the quantitative detection of APAP based on 5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrin (TSPP) dual-signal probe. The absorbance and fluorescence intensity of TSPP respectively were quenched when Fe3+ was introduced into TSPP solution. At this point, the color of the corresponding solution changed from red to green. The absorbance and fluorescence intensity of TSPP respectively were restored when APAP was added to the TSPP-Fe3+ system. At this time, the color of the solution changed from green to colorless. Therefore, an "ON-OFF-ON" dual-signal sensing study of APAP were constructed using TSPP as the colorimetric and fluorescent probe. The proposed colorimetric sensing system had a wide linear range in the 13.12 mM âˆ¼ 23.20 mM with 0.11 mM of limit of detection (LOD, S/N = 3). And the proposed fluorescence sensing system had a wide linear range in the 3.45 mM âˆ¼ 12.50 mM and 41.67 mM âˆ¼ 65.22 mM with 0.83 mM of limit of detection (LOD, S/N = 3). The dual-signal sensing system were applied to the APAP detection of real samples.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Porphyrins / Spectrometry, Fluorescence / Colorimetry / Acetaminophen Limits: Humans Language: En Journal: Spectrochim Acta A Mol Biomol Spectrosc Journal subject: BIOLOGIA MOLECULAR Year: 2024 Document type: Article Affiliation country: China Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Porphyrins / Spectrometry, Fluorescence / Colorimetry / Acetaminophen Limits: Humans Language: En Journal: Spectrochim Acta A Mol Biomol Spectrosc Journal subject: BIOLOGIA MOLECULAR Year: 2024 Document type: Article Affiliation country: China Country of publication: United kingdom