Your browser doesn't support javascript.
loading
Foliar-applied melatonin and titanium nanoparticles modulate cadmium (Cd) toxicity through minimizing Cd accumulation and optimizing physiological and biochemical properties in sage (Salvia officinalis L.).
Koohi, Atefeh; Rahdari, Parvaneh; Babakhani, Babak; Asadi, Mahmoud.
Affiliation
  • Koohi A; Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran.
  • Rahdari P; Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran. rahdari_parvaneh@yahoo.com.
  • Babakhani B; Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran.
  • Asadi M; Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran.
Environ Sci Pollut Res Int ; 31(32): 45370-45382, 2024 Jul.
Article in En | MEDLINE | ID: mdl-38965106
ABSTRACT
Notwithstanding the fact that melatonin (MT) and titanium nanoparticles (Ti NPs) alone have been widely used recently to modulate cadmium (Cd) stress in plants, there is a gap in the comparative impacts of these materials on lowering Cd toxicity in sage plants. The objective of this study was to determine how foliar application of MT and Ti NPs affected the growth, Cd accumulation, photosynthesis, water content, lipid peroxidation, and essential oil (EO) quality and quantity of sage plants in Cd-contaminated soils. A factorial experiment was conducted using MT at 100 and 200 µM and Ti NPs at 50 and 100 mg L-1 topically, together with Cd toxicity at 10 and 20 mg Cd kg-1 soil. The results showed that Cd toxicity decreased plant growth and enhanced lipid peroxidation. The Cd stress at 20 mg kg-1 soil resulted in increases in Cd root (693%), Cd shoot (429%), electrolyte leakage (EL, 29%), malondialdehyde (MDA, 72%), shoot weight (31%), root weight (27%), chlorophyll (Chl) a + b (26%), relative water content (RWC, 23%), and EO yield (30%). The application of MT and Ti NPs controlled drought stress by reducing MDA and EL, enhancing plant weight, Chl, RWC, and EO production, and minimizing Cd accumulation in plant tissues. The predominant compounds in the EO were α-thujone, 1,8-cineole, ß-thujone, camphor, and α-humulene. MT and Ti NPs caused α-thujone to rise, whereas Cd stress caused it to fall. Based on heat map analysis, MDA was the trait that was most sensitive to treatments. In summary, the research emphasizes the possibility of MT and Ti NPs, particularly MT at 200 µM, to mitigate Cd toxicity in sage plants and enhance their biochemical reactions.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Titanium / Cadmium / Salvia officinalis / Melatonin Language: En Journal: Environ Sci Pollut Res Int Journal subject: SAUDE AMBIENTAL / TOXICOLOGIA Year: 2024 Document type: Article Affiliation country: Iran Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Titanium / Cadmium / Salvia officinalis / Melatonin Language: En Journal: Environ Sci Pollut Res Int Journal subject: SAUDE AMBIENTAL / TOXICOLOGIA Year: 2024 Document type: Article Affiliation country: Iran Country of publication: Germany