Your browser doesn't support javascript.
loading
Dual-targeting class I HDAC inhibitor and ATM activator, SP-1-303, preferentially inhibits estrogen receptor positive breast cancer cell growth.
Jung, Mira; Nicholas, Nicole; Grindrod, Scott; Dritschilo, Anatoly.
Affiliation
  • Jung M; Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC, United States of America.
  • Nicholas N; Department of Biochemistry & Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States of America.
  • Grindrod S; Shuttle Pharmaceuticals, Inc., Rockville, Maryland, United States of America.
  • Dritschilo A; Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC, United States of America.
PLoS One ; 19(7): e0306168, 2024.
Article in En | MEDLINE | ID: mdl-39008483
ABSTRACT
Dual-targeting chromatin regulation and DNA damage repair signaling presents a promising avenue for cancer therapy. Applying rational drug design, we synthesized a potent dual-targeting small molecule, SP-1-303. Here, we report SP-1-303 as a class I isoform selective histone deacetylase (HDAC) inhibitor and an activator of the ataxia-telangiectasia mutated protein (ATM). In vitro enzymatic assays demonstrated selective inhibition of HDAC1 and HDAC3. Cellular growth inhibition studies show that SP-1-303 differentially inhibits growth of estrogen receptor positive breast cancer (ER+ BC) cells with effective growth inhibition concentrations (EC50) for MCF-7 and T47D cells ranging from 0.32 to 0.34 µM, compared to 1.2-2.5 µM for triple negative breast cancer cells, and ~12 µM for normal breast epithelial cells. Western analysis reveals that SP-1-303 decreases estrogen receptor alpha (ER-α) expression and increases p53 protein expression, while inducing the phosphorylation of ATM and its substrates, BRCA1 and p53, in a time-dependent manner in ER+ BC cells. Pharmacokinetic evaluation demonstrates an area under the curve (AUC) of 5227.55 ng/ml × h with an elimination half-life of 1.26 h following intravenous administration in a rat model. Collectively, SP-1-303 emerges as a novel second generation class I (HDAC1 and HDAC3) selective HDAC inhibitor, and ATM activator, capable of modulating ER expression, and inhibiting growth of ER+ BC cells. Combined targeting of class I HDACs and ATM by SP-1-303 offers a promising therapeutic approach for treating ER+ breast cancers and supports further preclinical evaluation.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Breast Neoplasms / Cell Proliferation / Histone Deacetylase Inhibitors / Ataxia Telangiectasia Mutated Proteins Limits: Animals / Female / Humans Language: En Journal: PLoS One Journal subject: CIENCIA / MEDICINA Year: 2024 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Breast Neoplasms / Cell Proliferation / Histone Deacetylase Inhibitors / Ataxia Telangiectasia Mutated Proteins Limits: Animals / Female / Humans Language: En Journal: PLoS One Journal subject: CIENCIA / MEDICINA Year: 2024 Document type: Article Affiliation country: United States