Your browser doesn't support javascript.
loading
Analysis of the causal relationship between gut microbiota and bone remodeling growth factor from the gene association.
Chen, Longhao; Zhou, Xingchen; Tian, Yu; Hu, Huijie; Hong, Shuangwei; Wu, Shuang; Wei, Zicheng; Wang, Kaizheng; Li, Tao; Hua, Zihan; Xia, Qiong; Huang, Yuanshen; Lv, Zhizhen; Lv, Lijiang.
Affiliation
  • Chen L; The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese M
  • Zhou X; The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese M
  • Tian Y; The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese M
  • Hu H; The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
  • Hong S; The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
  • Wu S; The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
  • Wei Z; The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
  • Wang K; The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
  • Li T; The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
  • Hua Z; The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
  • Xia Q; The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
  • Huang Y; The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
  • Lv Z; The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese M
  • Lv L; The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Tuina (Spinal disease), Zhejiang Chinese M
Microb Pathog ; 194: 106790, 2024 Sep.
Article in En | MEDLINE | ID: mdl-39009103
ABSTRACT

BACKGROUND:

A growing body of evidence indicates a close association between the gut microbiota (GM) and the bone remodeling (BR) process, raising suspicions that the GM may actively participate in BR by modulating the levels of growth factors. However, the precise causal relationship between them remains unclear. Due to many confounding factors, many microorganisms related to BR growth factors have not been identified. We aimed to elucidate the causal relationship between the GM and BR growth factors.

METHODS:

We evaluated the genome-wide association study (GWAS) summary statistics for GM and five common growth factors associated with BR namely, bone morphogenetic proteins (BMP), transforming growth factors(TGF), insulin growth factors (IGFs), epidermal growth factors (EGFs), and fibroblast growth factors (FGF). The causal relationship between the GM and BR growth factors was studied by double-sample Mendelian randomized analysis. We used five Mendelian randomization (MR) methods, including inverse variance-weighted (IVW), MR-Egger, simple mode, weighted median, and weighted model methods.

RESULTS:

Through MR analysis, a total of 56 bacterial genera were co-identified as associated with BMP, TGF, IGF, EGF, and FGF. Among them, eight genera were found to have a causal relationship with multiple growth factors Marvinbryantia was causally associated with BMP-6 (P = 0.018, OR = 1.355) and TGF-ß2 (P = 0.002, OR = 1.475); Lachnoclostridium, BMP-7 (P = 0.021, OR = 0.73) and IGF-1 (P = 0.046, OR = 0.804); Terrisporobacter, TGF-ß (P = 0.02, OR = 1.726) and FGF-23 levels (P = 0.016, OR = 1.76); Ruminiclostridium5, TGF-ß levels (P = 0.024, OR = 0.525) and FGFR-2 (P = 0.003, OR = 0.681); Erysipelatoclostridium, TGF-ß2 (P = 0.001, OR = 0.739) and EGF and its receptor (EGFR) (P = 0.012, OR = 0.795); Eubacterium_brachy_group, FGFR-2 (P = 0.045, OR = 1.153) and EGF (P = 0.013, OR = 0.7); Prevotella9 with EGFR (P = 0.022, OR = 0.818) and FGFR-2 (P = 0.011, OR = 1.233) and Faecalibacterium with FGF-23 (P = 0.02, OR = 2.053) and IGF-1 (P = 0.005, OR = 0.843).

CONCLUSION:

We confirmed the causal relationship between the GM and growth factors related to BR, which provides a new perspective for the study of BR, through targeted regulation of specific bacteria to prevent and treat diseases and growth factor-mediated BR disorders.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bone Remodeling / Genome-Wide Association Study / Mendelian Randomization Analysis / Gastrointestinal Microbiome Limits: Humans Language: En Journal: Microb Pathog Journal subject: DOENCAS TRANSMISSIVEIS / MICROBIOLOGIA Year: 2024 Document type: Article Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bone Remodeling / Genome-Wide Association Study / Mendelian Randomization Analysis / Gastrointestinal Microbiome Limits: Humans Language: En Journal: Microb Pathog Journal subject: DOENCAS TRANSMISSIVEIS / MICROBIOLOGIA Year: 2024 Document type: Article Country of publication: United kingdom