Your browser doesn't support javascript.
loading
Effect of granulated biochar sphere on mineral nutrients in removing potentially toxic elements from contaminated agricultural soils.
Wu, Yi; Wang, Zongwei; Yan, Yuhang; Zhou, Yuqian; Xue, Ziyu; Huma, Bushra; Tan, Zhongxin; Zhou, Tuo.
Affiliation
  • Wu Y; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Wang Z; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Yan Y; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Zhou Y; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Xue Z; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Huma B; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
  • Tan Z; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China. Electron
  • Zhou T; China State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
Sci Total Environ ; 949: 174775, 2024 Nov 01.
Article in En | MEDLINE | ID: mdl-39009160
ABSTRACT
Biochar (BC) granulation, yielding BC-based spheres, serves as an eco-friendly, cost-effective and efficient adsorbent for the removal of potential toxic elements (PTEs) from contaminated agricultural soils. The effect of BC-based spheres on mineral nutrients while effectively removing PTEs from contaminated soils is worth investigating. In this study, we utilized natural clay minerals, magnetic minerals and BC to produce water-hardened magnetic composite biochar sphere (WMBCS) that was capable of removing PTEs from composite contaminated agricultural soils. We explored the effect of WMBCS on minerals (Al, Ca, Fe, Mn, Na, Mg, Si, K, P, NH4+, and NO3-) in the removal of soil PTEs. WMBCS was a mineral nutrient-rich, recyclable, alkaline BC-based sphere that removes Cd (23.07-29.20 %), Pb (27.68-31.10 %), and As (26.17-37.48 %) from soils after three regeneration cycles. The effect of WMBCS on mineral nutrients varies depending on element type, BC and soil type. Compared to water-hardened magnetic composite phosphate modified biochar spheres (WMPBCS), water-hardened magnetic composite unmodified biochar spheres (WMUBCS) had more significant effect on Ca, Mg, Mn, Al and NH4+ in alkaline soils, but a greater effect on Ca, Mg, Mn, Fe and NO3- in acidic soils. Additionally, WMBCS displayed a more pronounced impact on mineral nutrients in alkaline soils than in acidic soils. The application of WMBCS reduced the accumulation of PTEs in wheat (18.40-84.70 %) and rice (27.96-88.66 %), but significantly inhibited seed germination and altered the uptake of mineral nutrients by seedlings due to its effects on soil physicochemical properties and mineral nutrient dynamics. Overall, WMBCS is suitable as a potential amendment for the remediation of soils co-contaminated with Cd, As, and Pb, but its effects on mineral nutrients cannot be overlooked, particularly in agricultural soils.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Soil / Soil Pollutants / Charcoal / Agriculture / Minerals Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Soil / Soil Pollutants / Charcoal / Agriculture / Minerals Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Affiliation country: China