Your browser doesn't support javascript.
loading
Carbon-based brilliance: a novel approach to renewable energy in radiotherapy centers.
Venkatraman, Pitchaikannu; Aggarwal, Lalit Mohan; Choudhary, Sunil.
Affiliation
  • Venkatraman P; Department of Radiotherapy & Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
  • Aggarwal LM; Department of Radiotherapy & Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
  • Choudhary S; Department of Radiotherapy & Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
Radiat Prot Dosimetry ; 200(11-12): 1189-1196, 2024 Jul 17.
Article in En | MEDLINE | ID: mdl-39016475
ABSTRACT
The energy produced from other sources which does neither come from fossil fuels nor contribute in the production of any greenhouse effects that causes climate changes is called as 'Alternative Energy'. Since our world's primary energy sources such as coal, oil and natural gases are exploited to a greater extent, we are in an urge to switch to an alternative energy. Scattered radiation, a common byproduct in radiation therapy and diagnostic radiology, presents a unique opportunity in the realm of alternative energy. As a potential source of interference, scattered radiation can be repurposed to contribute to sustainable energy solutions. Addressing the issue of scattered radiation wastage and utilizing it for alternative energy, an activated carbon-based solar cell emerges as a solution. This solar cell, a conventional one in which cadmium Telluride is replaced by coconut shell based carbon material, has the potential in producing a significant amount of electrical energy by utilizing scattered radiation from radiotherapy and radiology machines. Furthermore, this activated carbon based-material undergoes thorough characterization into various teletherapy and radiology machines, and it can be seamlessly integrated into clinical practices.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Renewable Energy Limits: Humans Language: En Journal: Radiat Prot Dosimetry Year: 2024 Document type: Article Affiliation country: India Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Renewable Energy Limits: Humans Language: En Journal: Radiat Prot Dosimetry Year: 2024 Document type: Article Affiliation country: India Country of publication: United kingdom