Sulfhydryl functionalized two-dimensional Ti3C2Tx MXene for efficient removal of Hg2+ in water samples.
J Hazard Mater
; 476: 135205, 2024 Sep 05.
Article
in En
| MEDLINE
| ID: mdl-39018599
ABSTRACT
This study describes an adsorption method for the removal of Hg2+ from aquatic environments using sulfhydryl-functionalized Ti3C2Tx (SH-Ti3C2Tx). SH-Ti3C2Tx materials were synthesized through covalent interactions between dithiothreitol and two-dimensional Ti3C2Tx. The insertion of -SH groups increased the interlayer spacing of Ti3C2Tx, resulting in a 3-fold increase in the specific surface area of SH-Ti3C2Tx compared with the original Ti3C2Tx. The maximum Hg2+ adsorption capacity of SH-Ti3C2Tx was 3042 mg/g, which was 2.3-fold greater than that of Ti3C2Tx. After Hg2+ adsorption, SH-Ti3C2Tx was regenerated for repeated used by rinsing with HCl-thiourea. Next, SH-Ti3C2Tx was loaded onto a melamine sponge to construct SH-Ti3C2Tx adsorption columns suitable for continuous flow Hg2+ removal with extremely low flow resistance. Hg2+ removal rates exceeded 95 % when treating both high and low-concentration solutions (20 mg/L Hg2+ and 10 µg/L Hg2+). This study demonstrates the excellent adsorption-regeneration performance of SH-Ti3C2Tx, which has broad application prospects for the in-situ treatment of water contaminated with Hg2+.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
J Hazard Mater
Journal subject:
SAUDE AMBIENTAL
Year:
2024
Document type:
Article
Affiliation country:
China
Country of publication:
Netherlands