Your browser doesn't support javascript.
loading
Dual-Vacancy-Engineered ZnIn2S4 Nanosheets for Harnessing Low-Frequency Vibration Induced Piezoelectric Polarization Coupled with Static Dipole Field to Enhance Photocatalytic H2 Evolution.
Zhong, Wen-Jia; Hung, Ming-Yuan; Kuo, Yen-Ting; Tian, Hong-Kang; Tsai, Chih-Ning; Wu, Chien-Jung; Lin, Yi-Dong; Yu, Hsiang-Chun; Lin, Yan-Gu; Wu, Jih-Jen.
Affiliation
  • Zhong WJ; Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
  • Hung MY; Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 70101, Taiwan.
  • Kuo YT; Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
  • Tian HK; Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
  • Tsai CN; Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 70101, Taiwan.
  • Wu CJ; Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan, 70101, Taiwan.
  • Lin YD; Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
  • Yu HC; Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
  • Lin YG; Institute of Pioneer Semiconductor Innovation, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
  • Wu JJ; Department of Chemistry, National Taiwan University, Taipei, 106319, Taiwan.
Adv Mater ; 36(36): e2403228, 2024 Sep.
Article in En | MEDLINE | ID: mdl-39022846
ABSTRACT
This study investigates the impact of In- and S-vacancy concentrations on the photocatalytic activity of non-centrosymmetric zinc indium sulfide (ZIS) nanosheets for the hydrogen evolution reaction (HER). A positive correlation between the concentrations of dual In and S vacancies and the photocatalytic HER rate over ZIS nanosheets is observed. The piezoelectric polarization, stimulated by low-frequency vortex vibration to ensure the well-dispersion of ZIS nanosheets in solution, plays a crucial role in enhancing photocatalytic HER over the dual-vacancy engineered ZIS nanosheets. The piezoelectric characteristic of the defective ZIS nanosheets is confirmed through the piezopotential response measured using piezoelectric force microscopy. Piezophotocatalytic H2 evolution over the ZIS nanosheets is boosted under accelerated vortex vibrations. The research explores how vacancies alter ZIS's dipole moment and piezoelectric properties, thereby increasing electric potential gradient and improving charge-separation efficiency, through multi-scale simulations, including Density Functional Theory and Finite Element Analysis, and a machine-learning interatomic potential for defect identification. Increased In and S vacancies lead to higher electric potential gradients in ZIS along [100] and [010] directions, attributing to dipole moment and the piezoelectric effect. This research provides a comprehensive exploration of vacancy engineering in ZIS nanosheets, leveraging the piezopotential and dipole field to enhance photocatalytic performances.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article Affiliation country: Taiwan Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article Affiliation country: Taiwan Country of publication: Germany