Your browser doesn't support javascript.
loading
Effects of lactate dehydrogenase A and GLUT1 inhibition on human endothelial cell migration in relation to their intracellular nucleotide pool.
Harasim, Gabriela; Franczak, Marika A; Minutolo, Filippo; Granchi, Carlotta; Giovannetti, Elisa; Slominska, Ewa M; Smolenski, Ryszard T; Peters, Godefridus J.
Affiliation
  • Harasim G; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.
  • Franczak MA; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.
  • Minutolo F; Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.
  • Granchi C; Dipartimento di Farmacia, Università di Pisa, Pisa, Italy.
  • Giovannetti E; Dipartimento di Farmacia, Università di Pisa, Pisa, Italy.
  • Slominska EM; Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.
  • Smolenski RT; Fondazione Pisana per la Scienza, Pisa, Italy.
  • Peters GJ; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.
Article in En | MEDLINE | ID: mdl-39037350
ABSTRACT
The expression of both lactate dehydrogenase A (LDH-A) and glucose transporter type 1 (GLUT1) is high in pancreatic, thoracic and many other types of cancer. GLUT1 is also highly expressed in endothelial cells (EC), that play an important role in tumor metastasis. We investigated the effect of inhibition of LDH-A by NHI-2 and GLUT1 by PGL14 on cellular migration, a hallmark of metastasis, in relation to changes in intracellular purine nucleotide and nicotinamide adenine dinucleotide pools in a human microvascular endothelial cell line (HMEC-1). HMEC-1 were treated with NHI-2 and PGL14 alone or in combination. Cell migration was tested by the wound healing assay. The intracellular purine nucleotides and NAD+/NADH concentrations were measured using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). Both NHI-2 at 15 µM and 45 µM and PGL14 at 10 µM and 30 µM inhibited migration by 5 to 28% while the combination led to 46% inhibition. The drugs also decreased intracellular nucleotide pools, but only 45 µM NHI-2 altered energy charge and redox status in HMEC-1 cells. Inhibitors of glycolysis attenuated migration and the energy charge of EC and support further development of LDH-A and GLUT1 inhibitors to target cancer aggressiveness and metastasis.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nucleosides Nucleotides Nucleic Acids Journal subject: BIOQUIMICA Year: 2024 Document type: Article Affiliation country: Poland Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nucleosides Nucleotides Nucleic Acids Journal subject: BIOQUIMICA Year: 2024 Document type: Article Affiliation country: Poland Country of publication: United States