Your browser doesn't support javascript.
loading
Unveiling the 3D Morphology of Epitaxial GaAs/AlGaAs Quantum Dots.
Zhang, Yiteng; Grünewald, Lukas; Cao, Xin; Abdelbarey, Doaa; Zheng, Xian; Rugeramigabo, Eddy Patrick; Verbeeck, Johan; Zopf, Michael; Ding, Fei.
Affiliation
  • Zhang Y; Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany.
  • Grünewald L; EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
  • Cao X; Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany.
  • Abdelbarey D; Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany.
  • Zheng X; Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany.
  • Rugeramigabo EP; Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany.
  • Verbeeck J; EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
  • Zopf M; Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany.
  • Ding F; Laboratorium für Nano- und Quantenengineering, Leibniz Universität Hannover, Schneiderberg 39, 30167 Hannover, Germany.
Nano Lett ; 24(33): 10106-10113, 2024 Aug 21.
Article in En | MEDLINE | ID: mdl-39053013
ABSTRACT
Strain-free GaAs/AlGaAs semiconductor quantum dots (QDs) grown by droplet etching and nanohole infilling (DENI) are highly promising candidates for the on-demand generation of indistinguishable and entangled photon sources. The spectroscopic fingerprint and quantum optical properties of QDs are significantly influenced by their morphology. The effects of nanohole geometry and infilled material on the exciton binding energies and fine structure splitting are well-understood. However, a comprehensive understanding of GaAs/AlGaAs QD morphology remains elusive. To address this, we employ high-resolution scanning transmission electron microscopy (STEM) and reverse engineering through selective chemical etching and atomic force microscopy (AFM). Cross-sectional STEM of uncapped QDs reveals an inverted conical nanohole with Al-rich sidewalls and defect-free interfaces. Subsequent selective chemical etching and AFM measurements further reveal asymmetries in element distribution. This study enhances the understanding of DENI QD morphology and provides a fundamental three-dimensional structural model for simulating and optimizing their optoelectronic properties.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nano Lett Year: 2024 Document type: Article Affiliation country: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nano Lett Year: 2024 Document type: Article Affiliation country: Germany