Your browser doesn't support javascript.
loading
Optimization of Grayscale Lithography for the Fabrication of Flat Diffractive Infrared Lenses on Silicon Wafers.
Bouchouri, Angelos; Akram, Muhammad Nadeem; Øhlckers, Per Alfred; Chen, Xuyuan.
Affiliation
  • Bouchouri A; Department of Microsystems, University of South-Eastern Norway, Raveien 205, 3184 Borre, Norway.
  • Akram MN; Department of Microsystems, University of South-Eastern Norway, Raveien 205, 3184 Borre, Norway.
  • Øhlckers PA; Department of Microsystems, University of South-Eastern Norway, Raveien 205, 3184 Borre, Norway.
  • Chen X; Department of Microsystems, University of South-Eastern Norway, Raveien 205, 3184 Borre, Norway.
Micromachines (Basel) ; 15(7)2024 Jun 30.
Article in En | MEDLINE | ID: mdl-39064378
ABSTRACT
Grayscale lithography (GSL) is an alternative approach to the standard binary lithography in MEMS fabrication, enabling the fabrication of complicated, arbitrary 3D structures on a wafer without the need for multiple masks and exposure steps. Despite its advantages, GSL's effectiveness is highly dependent on controlled lab conditions, equipment consistency, and finely tuned photoresist (PR) exposure and etching processes. This works presents a thorough investigation of the challenges of GSL for silicon (Si) wafers and presents a detailed approach on how to minimize fabrication inaccuracies, aiming to replicate the intended design as closely as possible. Utilizing a maskless laser writer, all aspects of the GSL are analyzed, from photoresist exposure parameters to Si etching conditions. A practical application of GSL is demonstrated in the fabrication of 4-µm-deep f#/1 Si Fresnel lenses for long-wave infrared (LWIR) imaging (8-12 µm). The surface topography of a Fresnel lens is a good case to apply GSL, as it has varying shapes and size features that need to be preserved. The final fabricated lens profiles show a good match with the initial design, and demonstrate successful etching of coarse and fine features, and demonstrative images taken with an LWIR camera.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Micromachines (Basel) Year: 2024 Document type: Article Affiliation country: Norway Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Micromachines (Basel) Year: 2024 Document type: Article Affiliation country: Norway Country of publication: Switzerland