Your browser doesn't support javascript.
loading
TTFDNet: Precise Depth Estimation from Single-Frame Fringe Patterns.
Cai, Yi; Guo, Mingyu; Wang, Congying; Lu, Xiaowei; Zeng, Xuanke; Sun, Yiling; Ai, Yuexia; Xu, Shixiang; Li, Jingzhen.
Affiliation
  • Cai Y; Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Lab of Micro-Nano Photonic Information Technology, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 5180
  • Guo M; Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Lab of Micro-Nano Photonic Information Technology, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 5180
  • Wang C; Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Lab of Micro-Nano Photonic Information Technology, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 5180
  • Lu X; Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Lab of Micro-Nano Photonic Information Technology, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 5180
  • Zeng X; Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Lab of Micro-Nano Photonic Information Technology, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 5180
  • Sun Y; Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Lab of Micro-Nano Photonic Information Technology, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 5180
  • Ai Y; Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Lab of Micro-Nano Photonic Information Technology, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 5180
  • Xu S; Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Lab of Micro-Nano Photonic Information Technology, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 5180
  • Li J; Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Lab of Micro-Nano Photonic Information Technology, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 5180
Sensors (Basel) ; 24(14)2024 Jul 21.
Article in En | MEDLINE | ID: mdl-39066131
ABSTRACT
This work presents TTFDNet, a transformer-based and transfer learning network for end-to-end depth estimation from single-frame fringe patterns in fringe projection profilometry. TTFDNet features a precise contour and coarse depth (PCCD) pre-processor, a global multi-dimensional fusion (GMDF) module and a progressive depth extractor (PDE). It utilizes transfer learning through fringe structure consistency evaluation (FSCE) to leverage the transformer's benefits even on a small dataset. Tested on 208 scenes, the model achieved a mean absolute error (MAE) of 0.00372 mm, outperforming Unet (0.03458 mm) models, PDE (0.01063 mm) and PCTNet (0.00518 mm). It demonstrated precise measurement capabilities with deviations of ~90 µm for a 25.4 mm radius ball and ~6 µm for a 20 mm thick metal part. Additionally, TTFDNet showed excellent generalization and robustness in dynamic reconstruction and varied imaging conditions, making it appropriate for practical applications in manufacturing, automation and computer vision.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sensors (Basel) Year: 2024 Document type: Article Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sensors (Basel) Year: 2024 Document type: Article Country of publication: Switzerland