Your browser doesn't support javascript.
loading
HIV-1-envelope trimer transitions from prefusion-closed to CD4-bound-open conformations through an occluded-intermediate state.
Lee, Myungjin; Lu, Maolin; Zhang, Baoshan; Zhou, Tongqing; Katte, Revansiddha; Han, Yang; Rawi, Reda; Kwong, Peter D.
Affiliation
  • Lee M; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
  • Lu M; Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, Texas, 75708, USA.
  • Zhang B; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
  • Zhou T; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
  • Katte R; Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, Texas, 75708, USA.
  • Han Y; Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, Texas, 75708, USA.
  • Rawi R; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
  • Kwong PD; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
bioRxiv ; 2024 Jul 17.
Article in En | MEDLINE | ID: mdl-39071380
ABSTRACT
HIV-1 infection is initiated by the interaction between the gp120 subunit in the envelope (Env) trimer and the cellular receptor CD4 on host cells. This interaction induces substantial structural rearrangement of the Env trimer. Currently, static structural information for prefusion-closed trimers, CD4-bound prefusion-open trimers, and various antibody-bound trimers is available. However, dynamic features between these static states (e.g., transition structures) are not well understood. Here, we investigate the full transition pathway of a site specifically glycosylated Env trimer between prefusion-closed and CD4-bound-open conformations by collective molecular dynamics and single-molecule Förster resonance energy transfer (smFRET). Our investigations reveal and confirm important features of the transition pathway, including movement of variable loops to generate a glycan hole at the trimer apex and formation or rearrangements of α-helices and ß-strands. Notably, by comparing the transition pathway to known Env-structures, we uncover evidence for a transition intermediate, with four antibodies, Ab1303, Ab1573, b12, and DH851.3, recognizing this intermediate. Each of these four antibodies induce population shifts of Env to occupy a newly observed smFRET state the "occluded-intermediate" state. We propose this occluded-intermediate state to be both a prevalent state of Env and an on-path conformation between prefusion-closed and CD4-bound-open states, previously overlooked in smFRET analyses.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: BioRxiv Year: 2024 Document type: Article Affiliation country: United States Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: BioRxiv Year: 2024 Document type: Article Affiliation country: United States Country of publication: United States