Your browser doesn't support javascript.
loading
Development of a tightly regulated copper-inducible transient gene expression system in Nicotiana benthamiana incorporating a suicide exon and Cre recombinase.
Chiang, Bing-Jen; Lin, Kuan-Yu; Chen, Yi-Feng; Huang, Ching-Yi; Goh, Foong-Jing; Huang, Lo-Ting; Chen, Li-Hung; Wu, Chih-Hang.
Affiliation
  • Chiang BJ; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan.
  • Lin KY; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan.
  • Chen YF; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan.
  • Huang CY; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan.
  • Goh FJ; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan.
  • Huang LT; Department of Plant Pathology, National Chung Hsing University, Taichung, 402 202, Taiwan.
  • Chen LH; Department of Plant Pathology, National Chung Hsing University, Taichung, 402 202, Taiwan.
  • Wu CH; Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402 202, Taiwan.
New Phytol ; 2024 Jul 30.
Article in En | MEDLINE | ID: mdl-39081031
ABSTRACT
Chemical-inducible gene expression systems are commonly used to regulate gene expression for functional genomics in various plant species. However, a convenient system that can tightly regulate transgene expression in Nicotiana benthamiana is still lacking. In this study, we developed a tightly regulated copper-inducible system that can control transgene expression and conduct cell death assays in N. benthamiana. We tested several chemical-inducible systems using Agrobacterium-mediated transient expression and found that the copper-inducible system exhibited the least concerns regarding leakiness in N. benthamiana. Although the copper-inducible system can control the expression of some tested reporters, it is not sufficiently tight to regulate certain tested hypersensitive cell death responses. Using the MoClo-based synthetic biology approach, we incorporated the suicide exon HyP5SM/OsL5 and Cre/LoxP as additional regulatory elements to enhance the tightness of the regulation. This new design allowed us to tightly control the hypersensitive cell death induced by several tested leucine-rich repeat-containing proteins and their matching avirulence factors, and it can be easily applied to regulate the expression of other transgenes in transient expression assays. Our findings offer new approaches for both fundamental and translational studies in plant functional genomics.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: New Phytol Journal subject: BOTANICA Year: 2024 Document type: Article Affiliation country: Taiwan

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: New Phytol Journal subject: BOTANICA Year: 2024 Document type: Article Affiliation country: Taiwan