Your browser doesn't support javascript.
loading
Photothermal Synergistic Effect Induces Bimetallic Cooperation to Modulate Product Selectivity of CO2 Reduction on Different CeO2 Crystal Facets.
Li, Naixu; Ren, Yuqi; Si, Yitao; Du, Mingyue; You, Changjun; Zhang, Chunyang; Zhu, Yuan-Hao; Sun, Zhenkun; Huang, Kai; Liu, Maochang; Duan, Lunbo.
Affiliation
  • Li N; Southeast University, School of Chemistry and Chemical Engineering, Dong nan da xue Road No.2, Jiangning District, Nanjing, China., 211189, Nanjing, CHINA.
  • Ren Y; Southeast University, School of Chemistry and Chemical Engineering, CHINA.
  • Si Y; Southeast University, School of Chemistry and Chemical Engineering, CHINA.
  • Du M; Xi'an Jiaotong University, International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, CHINA.
  • You C; Southeast University, School of Chemistry and Chemical Engineering, CHINA.
  • Zhang C; Xi'an Jiaotong University, International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, CHINA.
  • Zhu YH; Southeast University, School of Chemistry and Chemical Engineering, CHINA.
  • Sun Z; Southeast University, Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, CHINA.
  • Huang K; Southeast University, School of Chemistry and Chemical Engineering, CHINA.
  • Liu M; Xian Jiaotong University, International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, CHINA.
  • Duan L; Southeast University, Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, CHINA.
Angew Chem Int Ed Engl ; : e202410474, 2024 Aug 01.
Article in En | MEDLINE | ID: mdl-39087314
ABSTRACT
Product selectivity of solar-driven CO2 reduction and H2O oxidation reactions has been successfully controlled by tuning the spatial distance between Pt/Au bimetallic active sites on different crystal facets of CeO2 catalysts. The replacement depth of Ce atoms by monatomic Pt determines the distance between bimetallic sites, while Au clusters are deposited on the surface. This space configuration creates a favourable microenvironment for the migration of active hydrogen species (*H). The *H is generated via the activation of H2O on monatomic Pt sites and migrate towards Au clusters with a strong capacity for CO2 adsorption. Under concentrated solar irradiation, selectivity of the (100) facet towards CO is 100%, and the selectivity of the (110) and (111) facets towards CH4 is 33.5% and 97.6%, respectively. Notably, the CH4 yield on the (111) facet is as high as 369.4 µmol/g/h, and the solar-to-chemical energy efficiency of 0.23% is 33.8 times higher than that under non-concentrated solar irradiation. The impacts of high-density flux photon and thermal effects on carriers and *H migration at the microscale are comprehensively discussed. This study provides a new avenue for tuning the spatial distance between active sites to achieve optimal product selectivity.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl Year: 2024 Document type: Article Affiliation country: China