Impaired fatty acid import or catabolism in macrophages restricts intracellular growth of Mycobacterium tuberculosis.
bioRxiv
; 2024 Oct 11.
Article
in En
| MEDLINE
| ID: mdl-39091727
ABSTRACT
Mycobacterium tuberculosis (Mtb) infection of macrophages reprograms cellular metabolism to promote lipid retention. While it is clearly known that intracellular Mtb utilize host derived lipids to maintain infection, the role of macrophage lipid processing on the bacteria's ability to access the intracellular lipid pool remains undefined. We utilized a CRISPR-Cas9 genetic approach to assess the impact of sequential steps in fatty acid metabolism on the growth of intracellular Mtb. Our analyzes demonstrate that mutated macrophages that cannot either import, store or catabolize fatty acids restrict Mtb growth by both common and divergent anti-microbial mechanisms, including increased glycolysis, increased oxidative stress, production of pro-inflammatory cytokines, enhanced autophagy and nutrient limitation. We also show that impaired macrophage lipid droplet biogenesis is restrictive to Mtb replication, but increased induction fails to rescue Mtb growth. Our work expands our understanding of how host fatty acid homeostasis impacts Mtb growth in the macrophage.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
BioRxiv
Year:
2024
Document type:
Article
Affiliation country:
United States
Country of publication:
United States