Your browser doesn't support javascript.
loading
Enhanced removal of tetracycline in light-dark tandem by FeCu-doped carbon composites derived from waste cotton fabrics.
Wei, Xiaorong; Zhu, Nengwu; Xian, Jinchan; Wu, Pingxiao; Dang, Zhi.
Affiliation
  • Wei X; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
  • Zhu N; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control
  • Xian J; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
  • Wu P; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control
  • Dang Z; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control
Sci Total Environ ; 950: 175402, 2024 Nov 10.
Article in En | MEDLINE | ID: mdl-39127206
ABSTRACT
It is of great significance to develop an energy-efficient and external oxidant-free strategy for antibiotics removal. In this study, the novel light-dark tandem strategy was established to enhance tetracycline (TC) removal by bifunctional FeCu-doped carbon composites (FeCu@BC) derived from waste cotton fabrics. Interestingly, over 95 % TC was removed by FeCu@BC under light alone and dark alone in 10 min, with the same preferred conditions of pH 7.50 and 0.04 g/L catalyst dosage. Surprisingly, the enhanced mineralization efficiency of TC was achieved by the light-dark tandem without adjusting the parameters as 86.65 %, which was 1.13, 1.46 and 2.12 times higher than those of the dark-light tandem, light alone and dark alone, respectively. The mechanisms were elucidated as that 83.28 % direct degradation and 4.37 % indirect degradation under light while 47.63 % direct degradation and 24.16 % indirect degradation under darkness contributed for TC removal. The synergetic effects of persistent free radicals (PFRs) and FeCu interactions enabled FeCu@BC to work efficiently under both light and darkness, and light enhanced electron transfer between PFRs and FeCu interactions. Furthermore, energetic electrons stored in these active sites under light could be extracted to enhance electron transfer under subsequent darkness and the strongly catalytically active species initiated under light remained in action after cessation of light. Finally, high molecular TC was easily decomposed by energetic photo-catalysis and low molecular intermediates were mineralized under subsequent enhanced dark-catalysis to increase the mineralization efficiency. In general, this study provided an eco-friendly organics removal strategy and mechanisms insights based on the natural day-night cycle.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Country of publication: Netherlands