Your browser doesn't support javascript.
loading
Betaine alleviates nonalcoholic fatty liver disease (NAFLD) via a manner involving BHMT/FTO/m6A/ PGC1α signaling.
Liu, Jiaqi; Liu, Yuxi; Chen, Yushi; Liu, Youhua; Huang, Chaoqun; Luo, Yaojun; Wang, Xinxia.
Affiliation
  • Liu J; College of Animal Sciences, Zhejiang University, Hangzhou, China; Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China;
  • Liu Y; College of Animal Sciences, Zhejiang University, Hangzhou, China; Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China;
  • Chen Y; College of Animal Sciences, Zhejiang University, Hangzhou, China; Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China;
  • Liu Y; College of Animal Sciences, Zhejiang University, Hangzhou, China; Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China;
  • Huang C; College of Animal Sciences, Zhejiang University, Hangzhou, China; Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China;
  • Luo Y; College of Animal Sciences, Zhejiang University, Hangzhou, China; Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China;
  • Wang X; College of Animal Sciences, Zhejiang University, Hangzhou, China; Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China;
J Nutr Biochem ; 134: 109738, 2024 Aug 21.
Article in En | MEDLINE | ID: mdl-39154792
ABSTRACT
Nonalcoholic fatty liver disease (NAFLD) has emerged as a major public health crisis with significant health threats and economic burdens worldwide in the past decades. Betaine, a naturally occurring alkaloid compound present in various dietary sources including spinach and beets, has been shown to ameliorate hepatic lipid metabolism and attenuate (NAFLD), while the underlying mechanism remains elusive. Here, we propose a novel mechanism through which betaine exerts its protective effects against hepatic lipid accumulation and (NAFLD) from an epigenetics perspective. Specifically, we discover that betaine upregulates betaine homocysteine S-methyltransferase (BHMT) expression, leading to increased nicotinamide adenine dinucleotide phosphate (NADPH) production and subsequent upregulation of fat mass and obesity-associated protein (FTO) expression. Increased abundance of FTO targets peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1α) mRNA and reduces the N6-methyladenosine (m6A) level in the CDS of Ppargc1α transcript, which positively regulates PGC1α expression and subsequently inhibits hepatic lipid accumulation. Overall, our works demonstrate that betaine may be a promising therapeutic strategy for treating (NAFLD) and improving liver function through the regulation of (NADPH) and m6A-mediated pathways.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Nutr Biochem Journal subject: BIOQUIMICA / CIENCIAS DA NUTRICAO Year: 2024 Document type: Article Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Nutr Biochem Journal subject: BIOQUIMICA / CIENCIAS DA NUTRICAO Year: 2024 Document type: Article Country of publication: United States