Your browser doesn't support javascript.
loading
Resistance of grassland productivity to drought and heatwave over a temperate semi-arid climate zone.
Huang, Yangbin; Lei, Huimin; Duan, Limin.
Affiliation
  • Huang Y; Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China.
  • Lei H; Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China. Electronic address: leihm@tsinghua.edu.cn.
  • Duan L; College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
Sci Total Environ ; 951: 175495, 2024 Aug 16.
Article in En | MEDLINE | ID: mdl-39155014
ABSTRACT
Drought and heatwave are the primary climate extremes for vegetation productivity loss in the global temperate semi-arid grassland, challenging the ecosystem productivity stability in these areas. Previous studies have indicated a significant decline in the resistance of global grassland productivity to drought, but we still lack a systematic understanding of the mechanisms determining the spatiotemporal variations in grassland resistance to drought and heatwave. In this study, we focused on temperate semi-arid grasslands of China (TSGC) to assess the spatiotemporal variations of grassland productivity resistance to different climate extremes compound dry-hot events, individual drought events, and individual heatwave events that occurred during 2000-2019. Based on the explainable machine learning model, we explored the resistance to the interaction of drought and heatwave and identify the dominant factors determining the spatiotemporal variations in resistance. The results revealed that grassland resistance to climate extremes had decreased in Xilingol Grassland and Mu Us Sandy Land, and had a not significant increase in Otindag Desert during 2000-2019. Human activities and the increase in CO2 concentration causes a decline in resistance in Mu Us Sandy Land, and the increase of VPD and shift of vegetation loss event timing caused a decline in resistance in Xilingol Grassland, while the weakening of climate extremes, especially the shortening of drought duration, increase the resistance in Otindag Desert. Mean annual temperature dominates the spatial differences in resistance among different grasslands. When drought and heatwave occur simultaneously, there is an additive effect on resistance and causes lower resistance to compound dry-hot events compared to individual drought and heatwave events. Our analysis provides crucial insights into understanding the impact of climate extremes on the temperate semi-arid grasslands of China.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Affiliation country: China