Your browser doesn't support javascript.
loading
Collective condensation and auto-aggregation of Escherichia coli in uniform acidic environments.
Livne, Nir; Koler, Moriah; Vaknin, Ady.
Affiliation
  • Livne N; The Racah Institute of Physics, The Hebrew University, Jerusalem, Israel.
  • Koler M; The Racah Institute of Physics, The Hebrew University, Jerusalem, Israel.
  • Vaknin A; The Racah Institute of Physics, The Hebrew University, Jerusalem, Israel. avaknin@mail.huji.ac.il.
Commun Biol ; 7(1): 1028, 2024 Aug 21.
Article in En | MEDLINE | ID: mdl-39169072
ABSTRACT
Chemotaxis-the movement of cells along chemical gradients-leads to collective behaviors when cells coordinate their movements. Here, using Escherichia coli as a model, we demonstrate a distinct type of bacterial collective response in acidic environments containing organic acids. Bacterial populations immersed in such environments collectively condensed into millimeter-sized focal points. Furthermore, this bacterial condensation fostered the formation of small, tightly packed cell aggregates, resembling non-surface-attached biofilms. These cell aggregates were physically displaced by the free-swimming condensing cells, leading to the segregation of the two cell populations. Bacterial condensation relied on feedback between the tendency of these bacteria to neutralize the pH and their chemotactic repulsion from low pH. Sustained cell condensation occurred when the bacteria occupied only part of the acidic environment, either dynamically or due to physical constraints. Such condensed bacterial populations can mitigate acid stress more efficiently, a principle that may be applicable to other stress conditions.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Chemotaxis / Escherichia coli Language: En Journal: Commun Biol Year: 2024 Document type: Article Affiliation country: Israel

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Chemotaxis / Escherichia coli Language: En Journal: Commun Biol Year: 2024 Document type: Article Affiliation country: Israel