Discovery of a Thermodynamic-Control Two-Dimensional Cs6Pb5I16 Perovskite with a Unique Green Emission Color via Dynamic Structural Transformation.
J Phys Chem Lett
; 15(36): 9311-9318, 2024 Sep 12.
Article
in En
| MEDLINE
| ID: mdl-39235329
ABSTRACT
New perovskite materials of two-dimensional (2D) all-inorganic Ruddlesden-Popper (RP) perovskite Cs6Pb5I16 nanosheets were successfully obtained from the structural transformation of 2D PR-phase Cs7Pb6I19 nanosheets. The 2D RP-phase Cs6Pb5I16 perovskite nanosheets exhibited unique green emission with an emission wavelength of â¼500 nm. The crystal structure of the 2D RP-phase Cs6Pb5I16 perovskite nanosheets was determined by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy, and atomic force microscopy. The time-dependent photoluminescence measurements and XRD spectra were used to observe the optical and structure transformations from 2D Cs7Pb6I19 (n = 6) to 2D Cs6Pb5I16 (n = 5) perovskites. The in situ XRD measurements confirmed that γ-phase CsPbI3 was released during the structural transformation. Moreover, temperature-dependent in situ XRD measurements were employed to examine the kinetic energy involved in the structural transformation from the n = 6 form to the n = 5 form. Specifically, an intermediate structure from n = 6 to n = 5 was also identified. Most importantly, 2D Cs6Pb5I16 (n = 5) was more structurally thermodynamically stable than 2D Cs7Pb6I19 (n = 6). This study provides an essential route for the discovery of new types of perovskite structures during structural transformation.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
J Phys Chem Lett
Year:
2024
Document type:
Article
Affiliation country:
Taiwan
Country of publication:
United States