Stable Cycling of Na Metal Batteries at Ultrahigh Capacity.
Adv Mater
; : e2409062, 2024 Sep 06.
Article
in En
| MEDLINE
| ID: mdl-39240064
ABSTRACT
The development of sodium metal batteries has long been impeded by dendrite formation issues. State-of-the-art strategies, exemplified by sodiophilic hosting/seeding layers, have demonstrated great success in suppressing dendrite formation. However, addressing high-capacity applications (>10 mAh cm-2) remains a significant challenge. Herein, the study revisits the interlayer strategy by simply covering a carbon nanotube (CNT) film onto the surface of a sodium metal anode, unlocking its overlooked potential for ultrahigh capacity applications. In situ Raman spectroscopy reveals the interlayer's fast-ion-storage feature, enabling deposition at the interface without capacity limitations. Consequently, in symmetric cells, one-year long-term reversible cycling and a record-high capacity of 50 mAh cm-2 under 90% depth of discharge is achieved, representing a significant breakthrough for stabilizing Na anode. Furthermore, the full cell with a 50-µm thin metal anode and a high-loading Na3V2(PO4)3 cathode (12 mg cm-2) delivers a stable capacity of 94 mAh g-1 for 270 cycles (94% capacity retention).
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Adv Mater
Journal subject:
BIOFISICA
/
QUIMICA
Year:
2024
Document type:
Article
Affiliation country:
China
Country of publication:
Germany