Your browser doesn't support javascript.
loading
Copper cluster regulated by N, B atoms for enhanced CO2 electroreduction to formate.
Zhao, Yuying; Hu, Shengchun; Yuan, Qixin; Wang, Ao; Sun, Kang; Wang, Ziyun; Fan, Mengmeng; Jiang, Jianchun.
Affiliation
  • Zhao Y; Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Shandong Provincial Key Laboratory of Biomass Gasification Technology, Qilu Uni
  • Hu S; Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
  • Yuan Q; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Wang A; Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
  • Sun K; Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
  • Wang Z; School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand. Electronic address: ziyun.wang@auckland.ac.nz.
  • Fan M; Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest
  • Jiang J; Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest
J Colloid Interface Sci ; 678(Pt B): 456-464, 2024 Aug 31.
Article in En | MEDLINE | ID: mdl-39255602
ABSTRACT
Electrochemical CO2 conversion into formate by intermittent renewable electricity, presents a captivating prospect for both the storage of renewable electrical energy and the utilization of emitted CO2. Typically, Cu-based catalysts in CO2 reduction reactions favor the production of CO and other by-products. However, we have shifted this selectivity by incorporating B, N co-doped carbon (BNC) in the fabrication of Cu clusters. These Cu clusters are regulated with B, N atoms in a porous carbon matrix (Cu/BN-C), and Zn2+ ions were added to achieve Cu clusters with the diameter size of ∼1.0 nm. The obtained Cu/BN-C possesses a significantly improved catalytic performance in CO2 reduction to formate with a Faradaic efficiency (FE) of up to 70 % and partial current density (jformate) surpassing 20.8 mA cm-2 at -1.0 V vs RHE. The high FE and jformate are maintained over a 12-hour. The overall catalytic performance of Cu/BN-C outperforms those of the other investigated catalysts. Based on the density functional theory (DFT) calculation, the exceptional catalytic behavior is attributed to the synergistic effect between Cu clusters and N, B atoms by modulating the electronic structure and enhancing the charge transfer properties, which promoted a preferential adsorption of HCOO* over COOH*, favoring formate formation.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2024 Document type: Article Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2024 Document type: Article Country of publication: United States