Your browser doesn't support javascript.
loading
Regulation of drought stress on nutrient cycle and metabolism of rhizosphere microorganisms in desert riparian forest.
Li, Wenjing; Wang, Hengfang; Lv, Guanghui; Wang, Jinlong; Li, Jianhao.
Affiliation
  • Li W; College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang 830046, PR China; Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang 830046, PR China.
  • Wang H; College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang 830046, PR China; Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang 830046, PR China.
  • Lv G; College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang 830046, PR China; Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang 830046, PR China. Electronic address: ler@xju.edu.cn.
  • Wang J; College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang 830046, PR China; Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang 830046, PR China.
  • Li J; College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, PR China.
Sci Total Environ ; 954: 176148, 2024 Sep 10.
Article in En | MEDLINE | ID: mdl-39260483
ABSTRACT
Microbial communities in desert riparian forest ecosystems have developed unique adaptive strategies to thrive in harsh habitats shaped by prolonged exposure to abiotic stressors. However, the influence of drought stress on the functional and metabolic characteristics of soil rhizosphere microorganisms remains unknown. Therefore, this study aimed to investigate the effects of drought stress on soil biogeochemistry and metabolism and analyze the relationship between the biogeochemical cycle processes and network of differentially-expressed metabolites. Using metagenomics and metabolomics, this study explored the microbial functional cycle and differential metabolic pathways within desert riparian forests. The predominant biogeochemical cycles in the study area were the Carbon and Nitrogen cycles, comprising 78.90 % of C, N, Phosphorus, Sulfur and Iron cycles. Drought led to increased soil C fixation, reduced C degradation and methane metabolism, weakened denitrification, and decreased N fixation. Furthermore, drought can disrupt iron homeostasis and reduce its absorption. The differential metabolic pathways of drought stress include flavonoid biosynthesis, arachidonic acid metabolism, steroid hormone biosynthesis, and starch and sucrose degradation. Network analysis of functional genes and metabolism revealed a pronounced competitive relationship between the C cycle and metabolic network, whereas the Fe cycle and metabolic network promoted each other, optimizing resource utilization. Partial least squares analysis revealed that drought hindered the expression and metabolic processes and functional genes, whereas the rhizosphere environment facilitated metabolic expression and the functional genes. The rhizosphere effect primarily promoted metabolic processes indirectly through soil enzyme activities. The integrated multi-omics analysis further revealed that the effects of drought and the rhizosphere play a predominant role in shaping soil functional potential and the accumulation of metabolites. These insights deepen our comprehension of desert riparian forest ecosystems and offer strong support for the functionality of nutrient cycling and metabolite dynamics.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Country of publication: Netherlands