Angiopoietin-like Proteins and Lipoprotein Lipase: The Waltz Partners That Govern Triglyceride-Rich Lipoprotein Metabolism? Impact on Atherogenesis, Dietary Interventions, and Emerging Therapies.
J Clin Med
; 13(17)2024 Sep 04.
Article
in En
| MEDLINE
| ID: mdl-39274442
ABSTRACT
Over 50% of patients who take statins are still at risk of developing atherosclerotic cardiovascular disease (ASCVD) and do not achieve their goal LDL-C levels. This residual risk is largely dependent on triglyceride-rich lipoproteins (TRL) and their remnants. In essence, remnant cholesterol-rich chylomicron (CM) and very-low-density lipoprotein (VLDL) particles play a role in atherogenesis. These remnants increase when lipoprotein lipase (LPL) activity is inhibited. ApoCIII has been thoroughly studied as a chief inhibitor and therapeutic options to curb its effect are available. On top of apoCIII regulation of LPL activity, there is a more precise control of LPL in various tissues, which makes it easier to physiologically divide the TRL burden according to the body's requirements. In general, oxidative tissues such as skeletal and cardiac muscle preferentially take up lipids during fasting. Conversely, LPL activity in adipocytes increases significantly after feeding, while its activity in oxidative tissues decreases concurrently. This perspective addresses the recent improvements in our understanding of circadian LPL regulations and their therapeutic implications. Three major tissue-specific lipolysis regulators have been identified ANGPTL3, ANGPTL4, and ANGPTL8. Briefly, during the postprandial phase, liver ANGPTL8 acts on ANGPTL3 (which is released continuously from the liver) to inhibit LPL in the heart and muscle through an endocrine mechanism. On the other hand, when fasting, ANGPTL4, which is released by adipocytes, inhibits lipoprotein lipase in adipose tissue in a paracrine manner. ANGPTL3 inhibitors may play a therapeutic role in the treatment of hypertriglyceridemia. Several approaches are under development. We look forward to future studies to clarify (a) the nature of hormonal and nutritional factors that determine ANGPTL3, 4, and 8 activities, along with what long-term impacts may be expected if their regulation is impaired pharmacologically; (b) the understanding of the quantitative hierarchy and interaction of the regulatory actions of apoCIII, apoAV, and ANGPTL on LPL activity; (c) strategies for the safe and proper treatment of postprandial lipemia; and (d) the effect of fructose restriction on ANGPTL3, ANGPTL4, and ANGPTL8.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
J Clin Med
Year:
2024
Document type:
Article
Affiliation country:
United States
Country of publication:
Switzerland