Your browser doesn't support javascript.
loading
Enhancing antioxidant properties of lime juice powder through polyelectrolyte microparticles of chitosan-alginate: Formulation, characterization and stability study.
Rahmiati, Nur; Sari, Retno; Wahyuni, Tutik Sri; Lestari, Maria Lucia Ardhani Dwi.
Affiliation
  • Rahmiati N; Master Program of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia.
  • Sari R; Department of Pharmacy, Faculty of Pharmacy, Borneo Lestari University, Banjarbaru, Indonesia.
  • Wahyuni TS; Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia.
  • Lestari MLAD; Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia.
J Adv Pharm Technol Res ; 15(3): 231-236, 2024.
Article in En | MEDLINE | ID: mdl-39290542
ABSTRACT
Lime (Citrus aurantifolia) juice was reported to contain ascorbic acid (AA) and flavonoids, which has bioactivity as antioxidants. To develop an antioxidant product, improving its stability is necessary due to the perishable characteristics of compounds in lime. Therefore, the formulation of polyelectrolyte microparticles using chitosan and alginate was conducted to overcome the weaknesses. This study aims to evaluate the effect of various chitosan, alginate, and lime juice powder (LJP) concentrations on the physical characteristics and antioxidant activity of LJP encapsulated in chitosan-alginate microparticles (CALM). Microparticles with various concentrations of chitosan and alginate were prepared by ionic gelation method using CaCl2 as a crosslinker. The microparticles were evaluated for its physical properties and its antioxidant activity using 2-2-diphenyl-1-picrylhydrazyl reagent. A one-way ANOVA test and Tukey's honest significant difference post hoc were used to determine the effect of LJP amount on the antioxidant activity. The highest AA content in CALM was 0.14 mg/100 mg, with a % encapsulation efficiency of 18.38% ± 0.02%. Antioxidant activity tests revealed that LJP possessed the strong antioxidant activity with an IC50 value of 32.59 µg/mL, whereas IC50 values of the microparticles ranged from 24.79 ± 0.03 µg/mL to 39.96 ± 0.07 µg/mL. During storage, the IC50 of LJP decreased from 32.59 ± 0.13 µg/mL to 65.53 ± 0.03 µg/mL, whereas the IC50 of microparticles remained stable. This study concluded that the chitosan-alginate polyelectrolyte microparticle formulation can improve and protect LJP's antioxidant activity.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Adv Pharm Technol Res Year: 2024 Document type: Article Affiliation country: Indonesia Country of publication: India

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Adv Pharm Technol Res Year: 2024 Document type: Article Affiliation country: Indonesia Country of publication: India