Silicon Nanowires via Metal-Assisted Chemical Etching for Energy Storage Applications.
ChemSusChem
; : e202400777, 2024 Sep 18.
Article
in En
| MEDLINE
| ID: mdl-39292438
ABSTRACT
Silicon nanowires (SiNWs) have demonstrated great potential for energy storage due to their exceptional electrical conductivity, large surface area, and wide compositional range. Metal-assisted chemical etching (MACE) is a widely used top-down technique for fabricating silicon micro/nanostructures. SiNWs fabricated by MACE exhibit significant surface areas and diverse surface chemistry. Since the material composition and surface chemistry have a significant impact on the electrochemical energy storage performance, integrating SiNWs with diverse materials like porous carbon, metal oxides/sulfides, and polymers, can establish composites with excellent properties. Hence, it is imperative to meticulously fabricate SiNW-based materials with customizable morphologies and enhanced electrochemical energy-storage performance. This review provides an in-depth study of recent advancements in SiNW-based materials with enhanced performance for energy storage systems, such as supercapacitors (SCs) and lithium-ion batteries (LIBs). It includes a concise overview of the history, MACE synthesis, and characteristics of SiNWs. Further, it also explores the key elements that influence the MACE process of SiNWs and delves into structural engineering. Additionally, we introduce recent advances in SiNW-based materials for the design of high-performance energy-storage devices, namely SCs and LIBs. Finally, we present the crucial future prospects of SiNW-based materials for energy-storage applications.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
ChemSusChem
Journal subject:
QUIMICA
/
TOXICOLOGIA
Year:
2024
Document type:
Article
Affiliation country:
China
Country of publication:
Germany