Loss and recovery of liver regeneration in rats with fulminant hepatic failure.
J Surg Res
; 72(2): 112-22, 1997 Oct.
Article
in En
| MEDLINE
| ID: mdl-9356231
We earlier described a model of fulminant hepatic failure (FHF) in the rat where partial hepatectomy is combined with induction of right liver lobes necrosis. After this procedure, lack of regenerative response in the residual viable liver tissue (omental lobes) was associated with elevated plasma hepatocyte growth factor (HGF) and transforming growth factor beta (TGF-beta1) levels and delayed expression of HGF and c-met mRNA in the remnant liver. Here, we investigated whether syngeneic isolated hepatocytes transplanted in the spleen will prolong survival and facilitate liver regeneration in FHF rats. Inbred male Lewis rats were used. Group I rats (n = 46) received intrasplenic injection of 2 x 10(7) hepatocytes and 2 days later FHF was induced. Group II FHF rats (n = 46) received intrasplenic injection of saline. Rats undergoing partial hepatectomy of 68% (PH; n = 30) and a sham operation (SO; n = 30) served as controls. In 20 FHF rats (10 rats/group), survival time was determined. The remaining 72 FHF rats (36 rats/group) were used for physiologic studies (liver function and regeneration and plasma growth factor levels). In Group I rats survival was longer than that of Group II controls (73 +/- 22 hr vs. 33 +/- 9 hr; P < 0. 01). During the first 36 hr, Group I rats had lower blood ammonia, lactate, total bilirubin, PT, and PTT values, lower activity of liver enzymes, and higher monoethylglycinexylidide (MEGX) production than Group II rats. In Group I rats, livers increased in weight at a rate similar to that seen in PH controls and showed distinct mitotic and DNA synthetic activity (incorporation of bromodeoxyuridine and proliferation cell nuclear antigen expression). Plasma HGF and TGF-beta1 levels in these rats decreased and followed the pattern seen in PH rats; additionally, c-met expression in the remnant liver was accelerated. Hepatocyte transplantation prolonged survival in FHF rats and facilitated liver regeneration. Even though the remnant liver increased in weight four times reaching 30% of the original liver mass, the transplant-bearing rats expired due to inability of the regenerating liver to support the rat.
Search on Google
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Hepatic Encephalopathy
/
Cell Transplantation
/
Liver
/
Liver Regeneration
Type of study:
Prognostic_studies
Language:
En
Journal:
J Surg Res
Year:
1997
Document type:
Article
Affiliation country:
United States
Country of publication:
United States