Your browser doesn't support javascript.
loading
Sorcin associates with the pore-forming subunit of voltage-dependent L-type Ca2+ channels.
Meyers, M B; Puri, T S; Chien, A J; Gao, T; Hsu, P H; Hosey, M M; Fishman, G I.
Affiliation
  • Meyers MB; Department of Medicine, Cardiovascular Institute, Mount Sinai School of Medicine, New York, New York 10029, USA. marian_meyers@smtplink.mssm.edu
J Biol Chem ; 273(30): 18930-5, 1998 Jul 24.
Article in En | MEDLINE | ID: mdl-9668070
ABSTRACT
Intracellular Ca2+ release in muscle is governed by functional communication between the voltage-dependent L-type Ca2+ channel and the intracellular Ca2+ release channel by processes that are incompletely understood. We previously showed that sorcin binds to cardiac Ca2+ release channel/ryanodine receptors and decreases channel open probability in planar lipid bilayers. In addition, we showed that sorcin antibody immunoprecipitates ryanodine receptors from metabolically labeled cardiac myocytes along with a second protein having a molecular weight similar to that of the alpha1 subunit of cardiac L-type Ca2+ channels. We now demonstrate that sorcin biochemically associates with cardiac and skeletal muscle L-type Ca2+ channels specifically within the cytoplasmically oriented C-terminal region of the alpha1 subunits, providing evidence that the second protein recovered by sorcin antibody from cardiac myocytes was the 240-kDa L-type Ca2+ channel alpha1 subunit. Anti-sorcin antibody immunoprecipitated full-length alpha1 subunits from cardiac myocytes, C2C12 myotubes, and transfected non-muscle cells expressing alpha1 subunits. In contrast, the anti-sorcin antibody did not immunoprecipitate C-terminal truncated forms of alpha1 subunits that were detected in myotubes. Recombinant sorcin bound to cardiac and skeletal HIS6-tagged alpha1 C termini immobilized on Ni2+ resin. Additionally, anti-sorcin antibody immunoprecipitated C-terminal fragments of the cardiac alpha1 subunit exogenously expressed in mammalian cells. The results identified a putative sorcin binding domain within the C terminus of the alpha1 subunit. These observations, along with the demonstration that sorcin accumulated substantially during physiological maturation of the excitation-contraction coupling apparatus in developing postnatal rat heart and differentiating C2C12 muscle cells, suggest that sorcin may mediate interchannel communication during excitation-contraction coupling in heart and skeletal muscle.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Calcium-Binding Proteins / Calcium Channels Type of study: Risk_factors_studies Limits: Animals / Humans Language: En Journal: J Biol Chem Year: 1998 Document type: Article Affiliation country: United States
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Calcium-Binding Proteins / Calcium Channels Type of study: Risk_factors_studies Limits: Animals / Humans Language: En Journal: J Biol Chem Year: 1998 Document type: Article Affiliation country: United States