This article is a Preprint
Preprints are preliminary research reports that have not been certified by peer review. They should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.
Preprints posted online allow authors to receive rapid feedback and the entire scientific community can appraise the work for themselves and respond appropriately. Those comments are posted alongside the preprints for anyone to read them and serve as a post publication assessment.
Susceptibilities of human ACE2 genetic variants in coronavirus infection
Preprint
in En
| PREPRINT-BIORXIV
| ID: ppbiorxiv-452826
Journal article
A scientific journal published article is available and is probably based on this preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See journal article
A scientific journal published article is available and is probably based on this preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See journal article
ABSTRACT
The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in more than 1603 million cases worldwide and 3.4 million deaths (as of May 2021), with varying incidences and death rates among regions/ethnicities. Human genetic variation can affect disease progression and outcome, but little is known about genetic risk factors for SARS-CoV-2 infection. The coronaviruses SARS-CoV, SARS-CoV-2 and HCoV-NL63 all utilize the human protein angiotensin-converting enzyme 2 (ACE2) as the receptor to enter cells. We hypothesized that the genetic variability in ACE2 may contribute to the variable clinical outcomes of COVID-19. To test this hypothesis, we first conducted an in silico investigation of single-nucleotide polymorphisms (SNPs) in the coding region of ACE2 gene. We then applied an integrated approach of genetics, biochemistry and virology to explore the capacity of select ACE2 variants to bind coronavirus spike protein and mediate viral entry. We identified the ACE2 D355N variant that restricts the spike protein-ACE2 interaction and consequently limits infection both in vitro and in vivo. In conclusion, ACE2 polymorphisms could modulate susceptibility to SARS-CoV-2, which may lead to variable disease severity.
cc_no
Full text:
1
Collection:
09-preprints
Database:
PREPRINT-BIORXIV
Type of study:
Observational_studies
/
Prognostic_studies
Language:
En
Year:
2021
Document type:
Preprint